93 research outputs found

    Stellar 36,38^{36,38}Ar(n,γ)37,39(n,\gamma)^{37,39}Ar reactions and their effect on light neutron-rich nuclide synthesis

    Full text link
    The 36^{36}Ar(n,γ)37(n,\gamma)^{37}Ar (t1/2t_{1/2} = 35 d) and 38^{38}Ar(n,γ)39(n,\gamma)^{39}Ar (269 y) reactions were studied for the first time with a quasi-Maxwellian (kT∼47kT \sim 47 keV) neutron flux for Maxwellian Average Cross Section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the 37^{37}Ar/36^{36}Ar and 39^{39}Ar/38^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The 37^{37}Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of 36^{36}Ar and 38^{38}Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) mb and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron capture cross sections of 36,38^{36,38}Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A=36-48 during the weak ss-process. The new production cross sections have implications also for the use of 37^{37}Ar and 39^{39}Ar as environmental tracers in the atmosphere and hydrosphere.Comment: 18 pages + Supp. Mat. (13 pages) Accepted for publication in Phys. Rev. Let

    The first direct measurement of ¹²C (¹²C,n) ²³Mg at stellar energies

    Get PDF
    Neutrons produced by the carbon fusion reaction ¹²C(¹²C,n)²³Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction ¹²C(¹²C,p)²³Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that ¹²C(¹²C,n)²³Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. It also plays a non-negligible role in the production of weak s-process elements as well as in the production of the important galacti

    Independent measurement of the Hoyle state β\beta feeding from 12B using Gammasphere

    Get PDF
    Using an array of high-purity Compton-suppressed germanium detectors, we performed an independent measurement of the β\beta-decay branching ratio from 12B^{12}\mathrm{B} to the second-excited (Hoyle) state in 12C^{12}\mathrm{C}. Our result is 0.64(11)%0.64(11)\%, which is a factor ∼2\sim 2 smaller than the previously established literature value, but is in agreement with another recent measurement. This could indicate that the Hoyle state is more clustered than previously believed. The angular correlation of the Hoyle state γ\gamma cascade has also been measured for the first time. It is consistent with theoretical predictions

    Stretched states in B 12,13 with the (d,α) reaction

    Get PDF
    The (d,α) reaction is highly selective, favoring final states in which the removed neutron and proton are completely aligned in a J=2j configuration. We have studied the C14,15(d,α)B12,13 reactions in inverse kinematics using the Helical Orbit Spectrometer (HELIOS) at Argonne National Laboratory. In B12, the reaction strongly favors the population of a known 3+ state at 5.61 MeV, and for B13, we observe a possible unreported doublet of states at high excitation energy, probably corresponding to the B12(3+) state coupled to the 1s1/2 neutron from the C15 ground state. In contrast to single-nucleon transfer, deuteron-transfer reactions have not been widely studied with exotic nuclei

    Breakup branches of Borromean beryllium-9

    Get PDF
    The breakup reaction 9Be(4He, 3α)n was measured using an array of four double-sided silicon strip detectors at beam energies of 22 and 26 MeV. Excited states in 9Be up to 12 MeV were populated and reconstructed through the measurement of the charged reaction products. It is proposed that limits on the spins and parities of the states can be derived from the way that they decay. Various breakup paths for excited states in 9Be have been explored including the 8Be(g.s.) + n, 8Be(2+) + n and 5He(g.s.) + 4He channels. By imposing the condition that the breakup proceeded via the 8Be ground state, clean excitation spectra for 9Be were reconstructed. The remaining two breakup channels were found to possess strongly-overlapping kinematic signatures and more sophisticated methods (referenced) are required to completely disentangle these other possibilities. Emphasis is placed on the development of the experimental analysis and the usefulness of Monte-Carlo simulations for this purpose

    Fusion reactions of 58,64Ni+124Sn

    Get PDF
    International audience; In order to better understand the influence of transfer in sub-barrier nuclear reactions, cross sections for the system ^58,64Ni+^124Sn have been measured down to 0.5-1 mub and compared to detailed coupledchannel calculations. In agreement with a phenomenological Q-value systematics, calculations show the importance of including the coupling to the transfer channel for these heavy systems. No clear evidence of fusion hindrance is observed, probably due to the fact that the cross sections measured in this experiment are not low enough for the appearance of that phenomenon
    • …
    corecore