40 research outputs found

    The effect of mineral and organic nutrient input on yields and nitrogen balances in western Kenya

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Agriculture, Ecosystems & Environment 214 (2015): 10-20, doi:10.1016/j.agee.2015.08.006.Soil fertility declines constrain crop productivity on smallholder farms in sub-Saharan Africa. Government and non-government organizations promote the use of mineral fertilizer and improved seed varieties to redress nutrient depletion and increase crop yields. Similarly, rotational cropping with nitrogen (N)-fixing legume cover crops or trees is promoted to improve soil fertility and crop yields. We examined maize grain yields and partial N balances on 24 smallholder maize farms in western Kenya, where interventions have increased access to agricultural inputs and rotational legume technologies. On these farms, mineral fertilizer inputs ranged from 0 to 161 kg N ha-1 (mean = 48 kg N ha-1), and maize grain yields ranged from 1-7 tons ha-1 (mean = 3.4 t ha-1). Partial N balances ranged from large losses (-112 kg N ha-1) to large gains (93 kg N ha-1)with a mean of -3 kg N ha-1. Maize grain yields increased significantly with N inputs (from fertilizer and legumes) in 2012 but not in 2013 when rainfall was lower. Nitrogen inputs of 40 kg N ha-1 were required to produce 3 tons of maize ha-1. N balances varied both among farms and between years, highlighting the importance of tracking inputs and outputs on multiple farms over multiple years before drawing conclusions about nutrient management, soil fertility outcomes and food security. The addition of N from legume rotations was a strong predictor of grain yields and positive N balances in lower-yielding farms in both years. This suggested that legume rotations may be particularly important for buffering yields from climate variability and maintaining N balances in low rainfall years.This research was funded by an Earth Institute at Columbia University Cross-Cutting Initiative Grant, a National Science Foundation PIRE grant (IIA-0968211), and by the Bill and Melinda Gates Foundation (Gates Special Initiative Grant)

    A world of cobenefits : solving the global nitrogen challenge

    Get PDF
    Houlton, Benjamin Z. University of California. John Muir Institute of the Environment. Davis, CA, USA.Houlton, Benjamin Z. University of California. Department of Land, Air and Water Resources. Davis, CA, USA.Almaraz, Maya. University of California. Department of Land, Air and Water Resources. Davis, CA, USA.Aneja, Viney. North Carolina State University at Raleigh. Department of Marine, Earth, and Atmospheric Sciences. Raleigh, NC, USA.Austin, Amy T. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Austin, Amy T. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Bai, Edith. Chinese Academy of Sciences. Institute of Applied Ecology. CAS Key Laboratory of Forest Ecology and Management. Shenyang, China.Bai, Edith. Northeast Normal University. School of Geographical Sciences. Changchun, China.Cassman, Kenneth. University of Nebraska – Lincoln. Department of Agronomy and Horticulture. Lincoln. NE, USA.Compton, Jana E. Environmental Protection Agency. Western Ecology Division. Washington, DC, USA.Davidson, Eric A. University of Maryland Center for Environmental Science. Appalachian Laboratory. Cambridge, MD, USA.865-872Nitrogen is a critical component of the economy, food security, and planetary health. Many of the world's sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation

    Top-Ranked Priority Research Questions for Soil Science in the 21st Century

    Get PDF
    Soils provide critical support essential for life on earth, regulate processes across diverse terrestrial and aquatic ecosystems, and interact with the atmosphere. However, soil science is constrained by a variety of challenges including decreasing funding prospects and a declining number of new students and young professionals. Hence, there is a crucial need to revitalize the impact, relevance, and recognition of soil science as well as promote collaboration beyond traditionally defined soil science research disciplines. Such revitalization and collaboration may be fostered by a shift from discipline-focused soil science research to cross-disciplinary research approaches and issue-driven research. In this paper, we present the outcomes of an initiative to identify priority research questions as a tool for guiding future soil science research. The collaborative approach involved four stages including (i) survey-based solicitation of questions; (ii) criteria-based screening of submitted candidate questions, (iii) criteria-based ranking of screened questions, and (iv) final revision of top ranked questions. The 25 top ranked research questions emerged from 140 submitted candidate questions within five predetermined thematic areas that represent current and emerging research areas. We expect that the identified questions will inspire both existing and prospective researchers, enhance multi-disciplinary collaboration both within and outside soil science, draw the attention of grant-awarding bodies, and guide soil science research to address pressing societal, agricultural, and environmental challenges. Furthermore, we hope that the approach and findings presented in this paper will advance soil sciences by fostering improved collaboration among soil science practitioners and researchers, as well as with other sciences, policy experts, and emerging professionals (including students) to meet societal needs

    Methods for determining the CO2 removal capacity of enhanced weathering in agronomic settings

    Get PDF
    Recent analysis by the IPCC suggests that, across an array of scenarios, both GHG emissions reductions and various degrees of carbon removal will be required to achieve climate stabilization at a level that avoids the most dangerous climate changes in the future. Among a large number of options in the realm of natural climate solutions, atmospheric carbon dioxide removal (CDR) via enhanced silicate weathering (EW) in global working lands could, in theory, achieve billions of tons of CO2 removal each year. Despite such potential, however, scientific verification and field testing of this technology are still in need of significant advancement. Increasing the number of EW field trials can be aided by formal presentation of effective study designs and methodological approaches to quantifying CO2 removal. In particular, EW studies in working lands require interdisciplinary “convergence” research that links low temperature geochemistry and agronomy. Here, drawing on geologic and agronomic literature, as well as demonstration-scale research on quantifying EW, we provide an overview of (1) existing literature on EW experimentation as a CO2 removal technique, (2) agronomic and geologic approaches to studying EW in field settings, (3) the scientific bases and tradeoffs behind various techniques for quantifying CO2 removal and other relevant methodologies, and (4) the attributes of effective stakeholder engagement for translating scientific research in action. In doing so, we provide a guide for establishing interdisciplinary EW field trials, thereby advancing the verification of atmospheric CO2 in working lands through the convergence of geochemistry and agronomy

    A World of Cobenefits: Solving the Global Nitrogen Challenge

    Get PDF
    Nitrogen is a critical component of the economy, food security, and planetary health. Many of the world\u27s sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation

    Model-based scenarios for achieving net negative emissions in the food system

    Get PDF
    Most climate mitigation scenarios point to a combination of GHG emission reductions and CO2 removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO2. However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted “cradle-to-grave” and “land-to-sea” emission reduction strategies that embrace emerging climate-smart agro-industrial technologies

    Priority science can accelerate agroforestry as a natural climate solution

    Get PDF
    The expansion of agroforestry could provide substantial climate change mitigation (up to 0.31 Pg C yr−1), comparable to other prominent natural climate solutions such as reforestation. Yet, climate-focused agroforestry efforts grapple with ambiguity about which agroforestry actions provide mitigation, uncertainty about the magnitude of that mitigation and inability to reliably track progress. In this Perspective, we define agroforestry as a natural climate solution, discuss current understanding of the controls on farm-scale mitigation potential and highlight recent innovation on emergent, high-resolution remote sensing methods to enable detection, measurement and monitoring. We also assess the status of agroforestry in the context of global climate ambitions, highlighting regions of underappreciated expansion opportunity and identifying priorities for policy and praxis
    corecore