1,405 research outputs found

    Solar Ellerman Bombs in 1D Radiative Hydrodynamics

    Get PDF
    Recent observations from the Interface Region Imaging Spectrograph (IRIS) appear to show impulsive brightenings in high temperature lines, which when combined with simultaneous ground based observations in Hα\alpha, appear co-spatial to Ellerman Bombs (EBs). We use the RADYN 1-dimensional radiative transfer code in an attempt to try and reproduce the observed line profiles and simulate the atmospheric conditions of these events. Combined with the MULTI/RH line synthesis codes, we compute the Hα\alpha, Ca II 8542~\AA, and Mg II h \& k lines for these simulated events and compare them to previous observations. Our findings hint that the presence of superheated regions in the photosphere (>>10,000 K) is not a plausible explanation for the production of EB signatures. While we are able to recreate EB-like line profiles in Hα\alpha, Ca II 8542~\AA, and Mg II h \& k, we cannot achieve agreement with all of these simultaneously.Comment: Accepted into ApJL. 4 Figures, 1 Tabl

    Bi2Te1.6S1.4 - a Topological Insulator in the Tetradymite Family

    Full text link
    We describe the crystal growth, crystal structure, and basic electrical properties of Bi2Te1.6S1.4, which incorporates both S and Te in its Tetradymite quintuple layers in the motif -[Te0.8S0.2]-Bi-S-Bi-[Te0.8S0.2]-. This material differs from other Tetradymites studied as topological insulators due to the increased ionic character that arises from its significant S content. Bi2Te1.6S1.4 forms high quality crystals from the melt and is the S-rich limit of the ternary Bi-Te-S {\gamma}-Tetradymite phase at the melting point. The native material is n-type with a low resistivity; Sb substitution, with adjustment of the Te to S ratio, results in a crossover to p-type and resistive behavior at low temperatures. Angle resolved photoemission study shows that topological surface states are present, with the Dirac point more exposed than it is in Bi2Te3 and similar to that seen in Bi2Te2Se. Single crystal structure determination indicates that the S in the outer chalcogen layers is closer to the Bi than the Te, and therefore that the layers supporting the surface states are corrugated on the atomic scale.Comment: To be published in Physical Review B Rapid Communications 16 douuble spaced pages. 4 figures 1 tabl

    Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    Get PDF
    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are over-broadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a "multithread" model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a "hot spot" atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: 0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.Comment: 31 pages, 13 figures, 2 tables, accepted for publication in the Astrophysical Journa

    Extreme Sensitivity of Superconductivity to Stoichiometry in FeSe (Fe1+dSe)

    Full text link
    The recently discovered iron arsenide superconductors, which display superconducting transition temperatures as high as 55 K, appear to share a number of general features with high-Tc cuprates, including proximity to a magnetically ordered state and robustness of the superconductivity in the presence of disorder. Here we show that superconductivity in Fe1+dSe, the parent compound of the superconducting arsenide family, is destroyed by very small changes in stoichiometry. Further, we show that non-superconducting Fe1+dSe is not magnetically ordered down to low temperatures. These results suggest that robust superconductivity and immediate instability against an ordered magnetic state should not be considered as intrinsic characteristics of iron-based superconducting systems, and that Fe1+dSe may present a unique opportunity for determining which materials characteristics are critical to the existence of superconductivity in high Tc iron arsenide superconductors and which are not.Comment: Updated to reflect final version and include journal referenc

    New York's Southern Tier Landowners' Management for Early Successional Forest Habitat: Attitudes, Barriers and Motivations

    Full text link
    Click on the PDF for an Executive Summary and the full report. Visit the HDRU website for a complete listing of HDRU publications at: http://hdru.dnr.cornell.edu
    corecore