
Solar Ellerman Bombs in 1D Radiative Hydrodynamics

Reid, A., Mathioudakis, M., Kowalski, A., Doyle, J. G., & Allred, J. C. (2017). Solar Ellerman Bombs in 1D
Radiative Hydrodynamics. The Astrophysical Journal. Letters, 835(L37). DOI: 10.3847/2041-8213/835/2/L37

Published in:
The Astrophysical Journal. Letters

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 The American Astronomical Society.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74408031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/solar-ellerman-bombs-in-1d-radiative-hydrodynamics(7a465a7b-2285-4532-b05a-b5291f2ecf18).html


Solar Ellerman Bombs in 1D Radiative Hydrodynamics

A. Reid1,2, M. Mathioudakis1, A. Kowalski3,4, J. G. Doyle2, and J. C. Allred5
1 Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT71NN, UK; aaron.reid@qub.ac.uk

2 Armagh Observatory and Planetarium, College Hill, ArmaghBT61 9DG, UK
3 Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, 2000 Colorado Avenue, Boulder, CO 80305, USA

4 National Solar Observatory, University of Colorado Boulder, 3665 Discovery Drive, Boulder, CO 80303, USA
5 NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD 20771, USA

Received 2016 November 7; revised 2017 January 16; accepted 2017 January 17; published 2017 February 2

Abstract

Recent observations from the Interface Region Imaging Spectrograph appear to show impulsive brightenings in
high temperature lines, which when combined with simultaneous ground-based observations in Hα, appear co-
spatial to Ellerman Bombs (EBs). We use the RADYN one-dimensional radiative transfer code in an attempt to try
and reproduce the observed line profiles and simulate the atmospheric conditions of these events. Combined with
the MULTI/RH line synthesis codes, we compute the Hα, Ca II 8542 Å, and Mg II h and k lines for these simulated
events and compare them to previous observations. Our findings hint that the presence of superheated regions in
the photosphere (>10,000 K) is not a plausible explanation for the production of EB signatures. While we are able
to recreate EB-like line profiles in Hα, Ca II 8542 Å, and Mg II h and k, we cannot achieve agreement with all of
these simultaneously.
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1. Introduction

Ellerman Bombs (EBs) were first noticed in Ellerman
(1917), who noted brightenings in the wings of the Hα, Hβ,
and Hγ lines. These events have also been observed in the
wings of Ca II 8542 Å (Fang et al. 2006; Socas-Navarro
et al. 2006; Pariat et al. 2007; Li et al. 2015; Vissers et al.
2015), as well as in Ca II H images (Matsumoto et al. 2008a;
Hashimoto et al. 2010). They show no observable enhancement
in the core of these line profiles as these are formed in the
overlying chromospheric canopy. EBs are considered a solely
photospheric/lower chromospheric phenomenon (Vissers
et al. 2013).

EB brightenings are also observable in the Solar Dynamics
Observatory (SDO) 1700 and 1600 Å channels (Qiu
et al. 2000; Georgoulis et al. 2002; Pariat et al. 2007; Berlicki
et al. 2010; Vissers et al. 2013), though to a lesser degree than
the Hα line wings due to the broad passbands of these filters
encompassing a wide range of atmospheric heights (Vissers
et al. 2013). While the 1600 Å channel offers better contrast
than the 1700 Å channel (Rutten et al. 2013; Vissers et al.
2013), EB signatures are more difficult to observe in the
1600 Å channel due to contamination effects from C IV
emission with transition region temperatures.

EBs typically last for a few minutesand appear rather
impulsively in comparison with other photospheric bright-
enings such as moving magnetic features (MMFs). Reid et al.
(2016) have shown that by introducing an impulsivity criterion,
it is possible to distinguish between pseudo-EBs and EBs. EBs
are generally observed with co-spatial blueshifts, or bi-
directional Doppler shifts (Matsumoto et al. 2008a; Watanabe
et al. 2011).

EBs are generally found in regions of opposite polarity
magnetic flux (Georgoulis et al. 2002; Matsumoto et al. 2008b;
Watanabe et al. 2008; Hashimoto et al. 2010; Nelson et al.
2013; Vissers et al. 2013). Recent spectropolarimetric inver-
sions of these events show evidence for flux cancelation (Reid
et al. 2016), with magnetic energies comparable to that of the

radiative energy losses. EBs have been estimated to form in the
temperature minimum region (Nelson et al. 2015), with foot-
points reported to form as low as 300km (Watanabe
et al. 2011). As such, they are thought to appear due to
photospheric magnetic reconnection, occurring around the
temperature minimum region, where this process is most
efficient (Litvinenko 1999).
Three-dimensional numerical modeling of photospheric

reconnection has shown local temperature increases in the
photosphere by a factor of 1.1–1.5 relative to quiet Sun, along
with a density increase by a factor of 4 at the magnetic
inversion line (Archontis & Hood 2009). The Archontis &
Hood (2009) model has also shown bi-directional flows in the
region, with values of 2–4 km s−1. Semi-empirical models for
EBs show localized temperature enhancements of 600–3000 K
around the temperature minimum region (Fang et al. 2006;
Berlicki & Heinzel 2014). These temperature enhancements
lead to intensity enhancements in the wings of the Hα and Ca II
8542 Å lines. Other EB studies also find similar temperature
enhancements (200–3000 K) in the photosphere/temperature
minimum region (Georgoulis et al. 2002; Isobe et al. 2007;
Yang et al. 2013; Hong et al. 2014; Li et al. 2015).
EBs have also been found within quiet-Sun regions of the

photosphere (Rouppe van der Voort et al. 2016). The
observational signatures of these QSEBs are not as pronounced
as those found in the vicinity of active regions, though they are
still located in regions of opposite polarity magnetic flux. This
suggests that these events are identical to EBs occurring at
locations of weaker magnetic flux cancelation.
More recently, observations using the IRIS instrument

indicate that EB signatures have been found in the Mg II h
and k wings, Si IV, and C II lines (Peter et al. 2014; Kim
et al. 2015; Vissers et al. 2015; Tian et al. 2016). These lines
are sensitive to much higher temperatures (50,000–100,000
K)and sample the upper chromosphere and transition region.
Vissers et al. (2015) suggest that they are formed below the
chromospheric canopy due to superheating with temperatures
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up to 80,000 K. Judge (2015) has debated the origins of these
bombs on the basis that the UV photons detected in the Si IV
line cannot escape if formed below 500km above the
photospheric floor.

The MURaM code used by Reid et al. (2015) shows Hα
wing enhancement at the magnetic inversion line of a bipolar
structure, co-spatial with temperature enhancements. This event
has shown flux cancelation, though the simulation was of quiet
Sun, and so was more likely a QSEB. With the strong variance
in temperatures required to produce the EB signatures,
synthesizing these line profiles from hydrodynamical simula-
tions can help clarify the processes involved and also offers an
alternative approach to EB line formation modeling.

In this study, we use the RADYN code to model an EB-like
atmosphere, with corresponding synthesis of the Hα
(Section 2), Ca II 8542 Å (Section 2), and Mg II h and k
(Section 3) line profiles for comparison with previous
observational studies (e.g., Vissers et al. 2015).

2. Hα and Ca II 8542Å Modeling

The RADYN code (Carlsson & Stein 1992, 1994, 1995) has
been used extensively to study flare dynamics via beam heating
in a one-dimensional solar atmosphere. Rubio da Costa et al.
(2016) used the RADYN code in an attempt to model the
atmosphere of an X1.0 solar flare, synthesizing the Hα, Ca II
8542 Å, and Mg II h and k line profiles to compare with
observations. The code also has the ability to apply a time-
dependent heating function into the atmosphere, and thus is
aptly suited for the study of EBs.

Our RADYN simulations use the quiet-Sun starting atmos-
phere (QS.SL.LT in Allred et al. 2015). A time-dependent
heating function is applied to the atmosphere, allowing for a
range of energy deposition rates over various portions of the
photosphere/lower chromosphere. The MULTI line synthesis
code is used to synthesize the Hα and Ca II 8542 Å lines to
attempt to replicate the signatures of the observed line profiles
with emission in the wings, while leaving the line cores
unchanged.

Previous estimates of EB energies are in the range of 1024–
1027 erg (Georgoulis et al. 2002; Fang et al. 2006; Li
et al. 2015; Reid et al. 2016). If we assume a lifetime of ∼5
minutes, and an active reconnection area of 300km2, the
energy deposition rate would need to be of the order of
100–1000 erg cm−3 s−1, assuming a vertical extent of
∼200km.

A grid of models was set up, applying heating rates between
these values over 200km in the photosphere (see Grid 1 in
Table 1). The atmosphere takes roughly 9 s to stabilize after the
heating is applied, with all measurements taken at T=10 s. A
temperature enhancement appears at the location of energy
deposition, ranging between 300 and 2600 K, with 2600 K
relating to the 1000 erg cm−3 s−1 deposition rate. This is
accompanied by an associated local electron density enhance-
ment. Due to the sudden injection of energy, a shock forms at
the deposition location. This creates bi-directional velocity
flows up to 2 km s−1. The upward velocity is at the leading
edge of the shock and is stronger than the weaker, trailing
downflow.
With the associated synthesized Hα line profiles, it was

apparent that although the 100 erg cm−3 s−1 could create a
small enhancement, it was not sufficient to push the line wings
into emission. With energy deposition rates of
300–700 erg cm−3 s−1, the Hα line wing enhancement was
150% that of the background profile, while a deposition rate of
1000 erg cm−3 s−1 appeared to more than double the line wing
emission in Hα, while also enhancing the continuum by 20%,
which is contrary to observations.
An energy deposition rate of 500 erg cm−3 s−1 was thought to

be sufficient to replicate an EB-like enhancement in the wings of
Hα. This energy was then injected over 200km, and placed
across various regions of the photosphere/temperature minimum
region in an attempt to locate the formation height of EBs (Grid
2). We also modeled the emission in the Ca II 8542Å
linebecause, by considering two lines formed at different
heights, we can better constrain the location of EB energy
deposition. Figure 1 shows the response of the atmosphere to the
injected energy, along with the corresponding line profiles.
Since the density decreases with increasing height, deposit-

ing energy higher in the atmosphere results in greater
temperature enhancements. A maximum temperature of
9000 K was generated in Grid 2. Bi-directional flows are also
formed, with peak velocities up to 5km s−1. These values are
stronger than that of Grid 1. The electron density increase is not
linear with the height of injected energy. The increase appears
to plateau around 1.5×1013 cm−3. This nonlinear behavior is
also apparent in the corresponding Hα and Ca II 8542 Å line
profiles, with the greatest difference in the wing emission being
at the lower injected heights within Grid 2. A small Hα core
enhancement is also apparent in the simulations. This effect
could be greatly reduced with the application of a regular
chromosphere (Rutten & Uitenbroek 2012). The lack of an

Table 1
The Grids of Models Used in This Study

Grid Number Energy Rate Height (km) Atmosphere Comments

1 100–1000 300–500 Quiet Sun 300–700 erg cm−3 s−1 best-fit EB profiles in Hα.
2 500 300–1000 (200 km step) Quiet Sun 500–700 km best-fit EB profiles in Hα and Ca II.
3 (1–1000)×103 300–500 Quiet Sun All <10,000 K. Overwhelmed by continuum emission in all lines.
4 500 1000–2000 (200 km step) Quiet Sun Flare-like profiles in Ca and Hα. Good Mg II response.
5 500/1000 300–900 (200 km step) Plage 500–700 km best-fitEB Ca and Hα profiles. 700–900 km best-fitIB Mg II

profiles.
6 500/1000 1000–2000 (200 km step) Plage Flare-like profiles in all lines.
7 500 500–1000 Both Strong line core enhancement in Ca, Hα. Weak Mg II response in QS atmosphere.
8 500 500–1200 Both Ca in full emission, Hα strong enhancement. Good Mg II response in QS

atmosphere.

Note.IB—IRIS bombs. QS—Quiet-sun starting atmosphere. Energy rate is in erg cm−3 s−1.

2

The Astrophysical Journal Letters, 835:L37 (6pp), 2017 February 1 Reid et al.



overlying chromospheric canopy makes the small core
contribution from the photosphere visible.

Figure 2 shows contribution functions for the Hα and Ca II
8542 Å lines when an energy of 500 erg cm−3 s−1 is deposited

between 500 and 700 km above the photospheric floor. When
the energy is deposited higher in the atmosphere, a strong Ca II
8542 Å core enhancement is apparent (see Figure 1). When the
energy is injected lower in the atmosphere, the wing

Figure 1. Top left: synthesized Hα line profiles for energies deposited at various heights, using the quiet-Sun starting atmosphere. Top right: the corresponding Ca II

8542 Å line profiles. Bottom left: temperature profiles across the temperature minimum region. Bottom center: vertical velocity profiles. Bottom right: electron density
profiles.

Figure 2. Left: contribution function for the Hα line. Right: contribution function for the Ca II 8542 Å line profile. Dark regions indicate areas of strong contribution.
The green lines show the line profiles. The red lines show the τ=1 location, and the blue dashed line shows the vertical velocity as a function of height.
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enhancement broadens and becomes less intense overall, as the
energy is being injected into a region where the outer wings are
formed over a wider range of heights.

3. Mg II h and k Line Modeling

We have found that energy deposited in the 500–700 km
layer resulted in the best match to typically observed EB line
profiles for the Hα and Ca II 8542 Å lines (e.g., Figure 5 of
Vissers et al. 2013). In this section, we consider the response of
the Mg II h and k lines to similar EB heating. Recent
observations with the IRIS instrument hint at enhancements
in the wings of these lines (see Figure 10 of Vissers et al.
2015). We use the RH line synthesis code (Uitenbroek 2001;
Pereira & Uitenbroek 2015) to calculate the line profiles in
partial redistribution. The twogrids of models run for Hα and
Ca II in the previous section produce no enhancement in the
Mg II h and k lines (Grids 1 and 2).

A further grid of models was created, which increases the
energy deposited around the temperature minimum exponen-
tially, between (1−1000)×103 erg cm−3 s−1 (Grid 3).
Again, no enhancement is observed in the Mg II h and k lines,
though strong continuum enhancement appears with these high
energy deposition rates. The atmospheric response to this
sudden energetic injection did not create dramatically higher
temperatures. In fact, the peak temperature in the
1×106 erg cm−3 model reached 9500 K, with a corresponding
electron density of 1014 cm−3 and a peak shock velocity of
5 km s−1.

The contribution function of the Mg II h and k lines appeared
to show a line core formation height concentrated in the upper
chromosphere, with little contribution from the photosphere.
The wings of the lines were formed slightly lower, closer to the
line core formation region of Ca II 8542 Å. If the energy
deposition occurs in the lower-mid chromosphere, enhanced
emission in the Mg II h and k wings can be achieved, though
this will only cause flare-like profiles producing full emission
in Ca II 8542 Å and Hα (Grid 4).

It also became apparent that the background Mg II h and k
line profile of our model appeared in absorption rather than in
emission as is observed. In an attempt to rectify this issue, a
different starting atmosphere was adopted which has it’s
transition region pushed to higher column masses, to reflect a
more active, plage-like atmosphere (QS.SL.HT from Allred
et al. 2015).

With this new starting atmosphere, the initial profile of the
Mg II h and k lines appear in emission, similar to the
background profiles observed (Peter et al. 2014; Kim et al.
2015; Vissers et al. 2015; Tian et al. 2016). However, the line
cores of Ca II 8542 Å and Hα are also slightly enhanced, with
Ca II 8542 Å being more prominent.
Again, two grids of models were run, one grid applying

1000 erg cm−3 s−1 of heating in 200km depths over the
photosphere and temperature minimum, similar to Figure 1
(Grid 5). The second grid applied the same heating function in
the chromosphere, up to 2Mm above the photospheric floor
(Grid 6). We find that injecting the energy into the chromo-
sphere now only causes strong line core emission in the Hα,
Ca II 8542 Å, and Mg II h and k line profiles. This is
accompanied by large Doppler shifts due to very strong
velocities (>20 km s−1) in the leading shock front. The strong
Doppler velocities appear due to the shock front interacting
with transition region which is now at higher column masses.
This forces the transition region to shift even lower in the
atmosphere.
In Grid 5, in which we varied the energy deposition location

over the photosphere and temperature minimum region, we find
a similar atmospheric response to that of Figure 1 (Grid 2), only
slightly stronger due to the doubled heating rate. This can be
seen in Figure 3.
Figure 4 shows the corresponding line profiles synthesized

for the atmospheres shown in Figure 3. When the energy is
deposited below the temperature minimum region
(300–500 km above the photospheric floor), there is very little
response in all synthesized lines, but a noticeable continuum
increase, and slight wing enhancement in Hα and Ca II 8542 Å.
Similar to the quiet-Sun model, the best fitting for the Hα and
Ca II 8542 Å line profiles appears when the energy is inserted
around the temperature minimum region (500–700 km).
However, the Mg II h and k lines appear to have only their
outer wings showing enhancement. The response of Mg II h
and k when the heating is applied between 700 and 900 km
above the photospheric floor is most similar to that of strong
observed IRIS bombs (see Figure 10 in Vissers et al. 2015).
However, the Ca II 8542 Å line profile shows strong core
emission with energy deposited at this height. When halving
the energy deposition rate to the ideal rate identified in the
previous section, we find the enhancements in the lines reduce

Figure 3. Left: temperature profile across the temperature minimum region for 1000 erg cm−3 s−1 deposited at various heights, using the pre-flare starting atmosphere.
Middle: vertical velocity profiles. Right: electron density profiles. The dashed lines indicate runs with the injected energy density halved.
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slightly in Ca II 8542 Å and Mg II h and k, with a slightly larger
differential apparent in the Hα line profile.

To investigate if a larger depth range for the energy
deposition is more appropriate, we also ran two larger models
in both the quiet-Sun and pre-flare atmospheres (Grids 7 and 8).
These models inject 500 erg cm−3 s−1 over ranges of
500–1000 km and 500–1200 km. In all cases, strong core
enhancements were seen in the synthesized Ca II 8542 Å and
Hα line profiles. The Mg II h and k line profiles appeared to
show flare-like profiles with the pre-flare atmosphereand
strong enhancement in the line wings in the quiet-Sun
atmosphere.

4. Discussion and Conclusions

We have used one-dimensional radiative hydrodynamical
simulations of the solar atmosphere to investigate the location
and rate of energy deposition required to reproduce EB-like
line profiles. Our findings based on a quiet-Sun starting
atmosphere suggest that the location of energy deposition is
near the temperature minimum region, around 600km above
the photospheric floor. We find that placing the energy into the
chromosphere causes strong emission, especially in the core of
Ca II 8542 Å. When considering the Mg II h and k line profiles,
the quiet-Sun starting atmosphere is not viable, as it produced a
background profile in absorption. Inserting the energy around
the temperature minimum only enhanced the continuum around
these lines. The mid–upper chromosphere was the location of
the main contribution of the Mg II h and k lines, and so only by
depositing energy here could one get a visible response in these
lines, which could overcome the continuum enhancement. This
would then only cause flare-like profiles in the Hα and Ca II
8542 Å line cores.

A pre-flare, plage-like starting model was used in an attempt
to overcome this and push the formation to lower atmospheric

heights. While this was the case, the Hα and Ca II 8542 Å line
cores were enhanced in comparison to the quiet-Sun model,
with the Ca II 8542 Å background profile appearing particularly
unrealistic in comparison to observations.
However, it was possible to achieve Mg II h and k line

profiles similar to observations by depositing 500 erg cm−3 s−1

at 700–900 km above the photospheric floor. While the Mg II
profiles look similar to IRIS observations, the Ca II 8542 Å
cores appear in emission. If the energy is inserted 200 km lower
in the atmosphere (the ideal setup from the quiet-Sun models),
the Hα and Ca II 8542 Å line profiles appear EB-like, with
wing emission and no core enhancement, relative to the
background profile. The Mg II h and k profiles, however,
appear with enhancement in the outer wings, much unlike
observations.
We have shown that by considering the starting atmosphere

to be quiet Sun, we can obtain EB-like synthetic Hα and Ca II
8542 Å line profiles. This results in bi-directional flows at the
EB location due to the formation of a shock, with a stronger
upflow (2–5 km s−1)and weaker trailing downflow (1–2 km
s−1). This fits with observations reporting bi-directional jets at
EB locations (Matsumoto et al. 2008a; Watanabe et al. 2011)
and previous EB modeling attempts (Archontis & Hood 2009).
A local temperature enhancement of 2000–3000 K also
forms,and fits with previous estimates (Georgoulis
et al. 2002; Fang et al. 2006; Isobe et al. 2007; Archontis &
Hood 2009; Li et al. 2015). This situation, however, did not
accurately model the Mg II h and k lines, which needed a more
active starting atmosphere. While we could recreate Mg II h and
k profiles similar to recent IRIS observations, we were unable
to attain EB-like line profiles in all threeof our diagnostic lines
simultaneously. We speculate that an EB-specific atmospheric
model may be needed, which has different atmospheric
abundances, enabling the Ca II 8542 Å line core and Mg II h

Figure 4. Top: Mg II h and k line profiles, calculated in PRD from the atmospheres in Figure 3. Bottom left: Hα line profiles. Bottom right: Ca II 8542 Å line profiles.
The dashed lines indicate the line profiles when the energy deposition is halved.
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and k line wings to form at different heights. We also find that
we were unable to superheat the plasma to >10,000 K, as
previous works speculate, in order to explains the Mg II h and k
line formation (Peter et al. 2014; Kim et al. 2015; Vissers et al.
2015; Tian et al. 2016).
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acknowledge support by STFC. This research was supported
by the SOLARNET project (www.solarnet-east.eu) funded by
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grant agreement 312495. The research leading to these results
has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ment No. 606862 (F-CHROMA).
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