1,601 research outputs found

    Signs as deterrents of illegal parking in spaces designated for individuals with physical disabilities.

    Get PDF
    The percentage of illegal parking in spaces reserved for the physically disabled was monitored under three sign conditions: ground markings, ground markings plus vertical signs, and vertical signs containing a message that concerned citizens were watching the spaces. Illegal parking dropped from 69.3% of 102 vehides during the initial ground-sign condition to 57.3% of 36 vehides in the first vertical-sign condition. Following removal of the vertical signs, illegal parking increased to 68.7% of 43 vehides. During the second vertical-sign condition, illegal parking dropped to 53.7% of 32 vehides, followed by an increase to 69.5% of 68 vehides after the vertical signs were removed. The lowest rate of illegal parking (27.1% of 78 vehides) occurred in the vertical-sign-plus-message condition. Illegal parking subsequently increased to 34.6% (of 94 vehides) when the message sign was removed, followed by an increase to 65.2% (of 105 vehides) when the vertical signs were removed. Originally published Journal of Applied Behavior Analysis, Vol. 24, No. 1, Spring 199

    Anisotropic Hc2H_{c2} determined up to 92 T and the signature of multi-band superconductivity in Ca10_{10}(Pt4_{4}As8_{8})((Fe1x_{1-x}Ptx_{x})2_{2}As2_{2})5_{5} superconductor

    Full text link
    The upper critical fields, Hc2H_{c2}(TT), of single crystals of the superconductor Ca10_{10}(Pt4δ_{4-\delta}As8_{8})((Fe0.97_{0.97}Pt0.03_{0.03})2_{2}As2_{2})5_{5} (δ\delta \approx 0.246) are determined over a wide range of temperatures down to TT = 1.42 K and magnetic fields of up to μ0H\mu_{0}H \simeq 92 T. The measurements of anisotropic Hc2H_{c2}(TT) curves are performed in pulsed magnetic fields using radio-frequency contactless penetration depth measurements for magnetic field applied both parallel and perpendicular to the \textbf{ab}-plane. Whereas a clear upward curvature in Hc2cH_{c2}^{\parallel\textbf{c}}(TT) along \textbf{H}\parallel\textbf{c} is observed with decreasing temperature, the Hc2abH_{c2}^{\parallel\textbf{ab}}(TT) along \textbf{H}\parallel\textbf{ab} shows a flattening at low temperatures. The rapid increase of the Hc2cH_{c2}^{\parallel\textbf{c}}(TT) at low temperatures suggests that the superconductivity can be described by two dominating bands. The anisotropy parameter, γH\gamma_{H} \equiv Hc2ab/Hc2cH_{c2}^{\parallel\textbf{ab}}/H_{c2}^{\parallel\textbf{c}}, is \sim7 close to TcT_{c} and decreases considerably to \sim1 with decreasing temperature, showing rather weak anisotropy at low temperatures.Comment: 4pages, 3figures, accepted PRB Rapid Communicatio

    Symmetry of re-entrant tetragonal phase in Ba1-xNaxFe2As2: Magnetic versus orbital ordering mechanism

    Get PDF
    Magneto-structural phase transitions in Ba1-xAxFe2As2 (A = K, Na) materials are discussed for both magnetically and orbitally driven mechanisms, using a symmetry analysis formulated within the Landau theory of phase transitions. Both mechanisms predict identical orthorhombic space-group symmetries for the nematic and magnetic phases observed over much of the phase diagram, but they predict different tetragonal space-group symmetries for the newly discovered re-entrant tetragonal phase in Ba1-xNaxFe2As2 (x ~ 0.24-0.28). In a magnetic scenario, magnetic order with moments along the c-axis, as found experimentally, does not allow any type of orbital order, but in an orbital scenario, we have determined two possible orbital patterns, specified by P4/mnc1' and I4221' space groups, which do not require atomic displacements relative to the parent I4/mmm1' symmetry and, in consequence, are indistinguishable in conventional diffraction experiments. We demonstrate that the three possible space groups are however, distinct in resonant X-ray Bragg diffraction patterns created by Templeton & Templeton scattering. This provides an experimental method of distinguishing between magnetic and orbital models

    Bi2Te1.6S1.4 - a Topological Insulator in the Tetradymite Family

    Full text link
    We describe the crystal growth, crystal structure, and basic electrical properties of Bi2Te1.6S1.4, which incorporates both S and Te in its Tetradymite quintuple layers in the motif -[Te0.8S0.2]-Bi-S-Bi-[Te0.8S0.2]-. This material differs from other Tetradymites studied as topological insulators due to the increased ionic character that arises from its significant S content. Bi2Te1.6S1.4 forms high quality crystals from the melt and is the S-rich limit of the ternary Bi-Te-S {\gamma}-Tetradymite phase at the melting point. The native material is n-type with a low resistivity; Sb substitution, with adjustment of the Te to S ratio, results in a crossover to p-type and resistive behavior at low temperatures. Angle resolved photoemission study shows that topological surface states are present, with the Dirac point more exposed than it is in Bi2Te3 and similar to that seen in Bi2Te2Se. Single crystal structure determination indicates that the S in the outer chalcogen layers is closer to the Bi than the Te, and therefore that the layers supporting the surface states are corrugated on the atomic scale.Comment: To be published in Physical Review B Rapid Communications 16 douuble spaced pages. 4 figures 1 tabl

    Solar Ellerman Bombs in 1D Radiative Hydrodynamics

    Get PDF
    Recent observations from the Interface Region Imaging Spectrograph (IRIS) appear to show impulsive brightenings in high temperature lines, which when combined with simultaneous ground based observations in Hα\alpha, appear co-spatial to Ellerman Bombs (EBs). We use the RADYN 1-dimensional radiative transfer code in an attempt to try and reproduce the observed line profiles and simulate the atmospheric conditions of these events. Combined with the MULTI/RH line synthesis codes, we compute the Hα\alpha, Ca II 8542~\AA, and Mg II h \& k lines for these simulated events and compare them to previous observations. Our findings hint that the presence of superheated regions in the photosphere (>>10,000 K) is not a plausible explanation for the production of EB signatures. While we are able to recreate EB-like line profiles in Hα\alpha, Ca II 8542~\AA, and Mg II h \& k, we cannot achieve agreement with all of these simultaneously.Comment: Accepted into ApJL. 4 Figures, 1 Tabl

    The Implications of M Dwarf Flares on the Detection and Characterization of Exoplanets at Infrared Wavelengths

    Full text link
    We present the results of an observational campaign which obtained high time cadence, high precision, simultaneous optical and IR photometric observations of three M dwarf flare stars for 47 hours. The campaign was designed to characterize the behavior of energetic flare events, which routinely occur on M dwarfs, at IR wavelengths to milli-magnitude precision, and quantify to what extent such events might influence current and future efforts to detect and characterize extrasolar planets surrounding these stars. We detected and characterized four highly energetic optical flares having U-band total energies of ~7.8x10^30 to ~1.3x10^32 ergs, and found no corresponding response in the J, H, or Ks bandpasses at the precision of our data. For active dM3e stars, we find that a ~1.3x10^32 erg U-band flare (delta Umax ~1.5 mag) will induce <8.3 (J), <8.5 (H), and <11.7 (Ks) milli-mags of a response. A flare of this energy or greater should occur less than once per 18 hours. For active dM4.5e stars, we find that a ~5.1x10^31 erg U-band flare (delta Umax ~1.6 mag) will induce <7.8 (J), <8.8 (H), and <5.1 (Ks) milli-mags of a response. A flare of this energy or greater should occur less than once per 10 hours. No evidence of stellar variability not associated with discrete flare events was observed at the level of ~3.9 milli-mags over 1 hour time-scales and at the level of ~5.6 milli-mags over 7.5 hour time-scales. We therefore demonstrate that most M dwarf stellar activity and flares will not influence IR detection and characterization studies of M dwarf exoplanets above the level of ~5-11 milli-mags, depending on the filter and spectral type. We speculate that the most energetic megaflares on M dwarfs, which occur at rates of once per month, are likely to be easily detected in IR observations with sensitivity of tens of milli-mags.Comment: Accepted in Astronomical Journal, 17 pages, 6 figure

    Approximations for radiative cooling and heating in the solar chromosphere

    Full text link
    Context. The radiative energy balance in the solar chromosphere is dominated by strong spectral lines that are formed out of LTE. It is computationally prohibitive to solve the full equations of radiative transfer and statistical equilibrium in 3D time dependent MHD simulations. Aims. To find simple recipes to compute the radiative energy balance in the dominant lines under solar chromospheric conditions. Methods. We use detailed calculations in time-dependent and 2D MHD snapshots to derive empirical formulae for the radiative cooling and heating. Results. The radiative cooling in neutral hydrogen lines and the Lyman continuum, the H and K and intrared triplet lines of singly ionized calcium and the h and k lines of singly ionized magnesium can be written as a product of an optically thin emission (dependent on temperature), an escape probability (dependent on column mass) and an ionization fraction (dependent on temperature). In the cool pockets of the chromosphere the same transitions contribute to the heating of the gas and similar formulae can be derived for these processes. We finally derive a simple recipe for the radiative heating of the chromosphere from incoming coronal radiation. We compare our recipes with the detailed results and comment on the accuracy and applicability of the recipes.Comment: accepted for publication in Astronomy & Astrophysic

    Extreme Sensitivity of Superconductivity to Stoichiometry in FeSe (Fe1+dSe)

    Full text link
    The recently discovered iron arsenide superconductors, which display superconducting transition temperatures as high as 55 K, appear to share a number of general features with high-Tc cuprates, including proximity to a magnetically ordered state and robustness of the superconductivity in the presence of disorder. Here we show that superconductivity in Fe1+dSe, the parent compound of the superconducting arsenide family, is destroyed by very small changes in stoichiometry. Further, we show that non-superconducting Fe1+dSe is not magnetically ordered down to low temperatures. These results suggest that robust superconductivity and immediate instability against an ordered magnetic state should not be considered as intrinsic characteristics of iron-based superconducting systems, and that Fe1+dSe may present a unique opportunity for determining which materials characteristics are critical to the existence of superconductivity in high Tc iron arsenide superconductors and which are not.Comment: Updated to reflect final version and include journal referenc
    corecore