1,488 research outputs found

    Retirement from sport and the loss of athletic identity

    Get PDF
    The purpose of this study was to examine how a sample of elite athletes coped with distressful reactions to retirement from sport. As part of a larger research project, 15 former elite athletes were identified as having experienced severe emotional difficulties upon athletic career termination. Through use of a micronarrative methodology, it was determined that account making can be a significant moderator of distress during the career transition process. In addition, the quality of the account making was found to be related to present affect and overall success in coping with athletic retirement. Finally, changes in athletic identity were found to be significant determinants of adjustment for athletes upon career termination. Suggestions are presented for future research on treatment strategies for distressful reactions to retirement from sport

    Vector Correlators in Lattice QCD: methods and applications

    Full text link
    We discuss the calculation of the leading hadronic vacuum polarization in lattice QCD. Exploiting the excellent quality of the compiled experimental data for the e^+e^- --> hadrons cross-section, we predict the outcome of large-volume lattice calculations at the physical pion mass, and design computational strategies for the lattice to have an impact on important phenomenological quantities such as the leading hadronic contribution to (g-2)mu and the running of the electromagnetic coupling constant. First, the R(s) ratio can be calculated directly on the lattice in the threshold region, and we provide the formulae to do so with twisted boundary conditions. Second, the current correlator projected onto zero spatial momentum, in a Euclidean time interval where it can be calculated accurately, provides a potentially critical test of the experimental R(s) ratio in the region that is most relevant for (g-2)mu. This observation can also be turned around: the vector correlator at intermediate distances can be used to determine the lattice spacing in fm, and we make a concrete proposal in this direction. Finally, we quantify the finite-size effects on the current correlator coming from low-energy two-pion states and provide a general parametrization of the vacuum polarization on the torus.Comment: 16 pages, 9 figure files; corrected a factor 2 in Eq. (7) over the published versio

    Expanding the Diversity of Mycobacteriophages: Insights into Genome Architecture and Evolution

    Get PDF
    Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists

    Leptogenesis in a Realistic Supersymmetric Model of Inflation with a Low Reheat Temperature

    Get PDF
    We discuss leptogenesis in a realistic supersymmetric model of inflation with a low reheat temperature 1-10 GeV. The lepton asymmetry is generated by a decaying right handed sneutrino, which is produced after inflation during preheating. The inflationary model is based on a simple variant of the Next-to-Minimal Supersymmetric Standard model (NMSSM) which solves the \mu problem, called \phiNMSSM, where the additional singlet \phi plays the role of the inflaton in hybrid (or inverted hybrid) type models. The model is invariant under an approximate Peccei-Quinn symmetry which also solves the strong CP problem, and leads to an invisible axion with interesting cosmological consequences. We show how the baryon number of the universe and the nature of cold dark matter are determined by the same parameters controlling the strong CP problem, the \mu problem and the neutrino masses and mixing angles.Comment: 17 page, latex, 1 eps fi

    Progress in the physics of massive neutrinos

    Full text link
    The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. The impact of cosmology (BBN, CMB, leptogenesis) and astrophysics (supernovae, highest energy cosmic rays) on neutrino observables and vice versa, is evaluated. The predictions of grand unified, radiative and other models of neutrino mass are discussed. Ways of determining the unknown parameters of three-neutrino oscillations are assessed, taking into account eight-fold degeneracies in parameters that yield the same oscillation probabilities, as well as ways to determine the absolute neutrino mass scale (from beta-decay, neutrinoless double-beta decay, large scale structure and Z-bursts). Critical unknowns at present are the amplitude of \nu_\mu to \nu_e oscillations and the hierarchy of the neutrino mass spectrum; the detection of CP violation in the neutrino sector depends on these and on an unknown phase. The estimated neutrino parameter sensitivities at future facilities (reactors, superbeams, neutrino factories) are given. The overall agenda of a future neutrino physics program to construct a bottom-up understanding of the lepton sector is presented.Comment: 111 pages, 35 figures. Update

    Leptogenesis and rescattering in supersymmetric models

    Get PDF
    The observed baryon asymmetry of the Universe can be due to the BLB-L violating decay of heavy right handed (s)neutrinos. The amount of the asymmetry depends crucially on their number density. If the (s)neutrinos are generated thermally, in supersymmetric models there is limited parameter space leading to enough baryons. For this reason, several alternative mechanisms have been proposed. We discuss the nonperturbative production of sneutrino quanta by a direct coupling to the inflaton. This production dominates over the corresponding creation of neutrinos, and it can easily (i.e. even for a rather small inflaton-sneutrino coupling) lead to a sufficient baryon asymmetry. We then study the amplification of MSSM degrees of freedom, via their coupling to the sneutrinos, during the rescattering phase which follows the nonperturbative production. This process, which mainly influences the (MSSM) DD-flat directions, is very efficient as long as the sneutrinos quanta are in the relativistic regime. The rapid amplification of the light degrees of freedom may potentially lead to a gravitino problem. We estimate the gravitino production by means of a perturbative calculation, discussing the regime in which we expect it to be reliable.Comment: (20 pages, 6 figures), references added, typos corrected. Final version in revte

    Connecting X-ray absorption and 21 cm neutral hydrogen absorption in obscured radio AGN

    Get PDF
    Many radio galaxies show the presence of dense and dusty gas near the active nucleus. This can be traced by both 21 cm H I absorption and soft X-ray absorption, offering new insight into the physical nature of the circumnuclear medium of these distant galaxies. To better understand this relationship, we investigate soft X-ray absorption as an indicator for the detection of associated H I absorption, as part of preparation for the First Large Absorption Survey in H I to be undertaken with the Australian Square Kilometre Array Pathfinder (ASKAP). We present the results of our pilot study using the Boolardy Engineering Test Array, a precursor to ASKAP, to search for new absorption detections in radio sources brighter than 1 Jy that also feature soft X-ray absorption. Based on this pilot survey, we detected H I absorption towards the radio source PKS 1657−298 at a redshift of z = 0.42. This source also features the highest X-ray absorption ratio of our pilot sample by a factor of 3, which is consistent with our general findings that X-ray absorption predicates the presence of dense neutral gas. By comparing the X-ray properties of active galactic nuclei with and without detection of H I absorption at radio wavelengths, we find that X-ray hardness ratio and H I absorption optical depth are correlated at a statistical significance of 4.71σ. We conclude by considering the impact of these findings on future radio and X-ray absorption studies

    Neutrino Masses and Mixing: Evidence and Implications

    Get PDF
    Measurements of various features of the fluxes of atmospheric and solar neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. We review the phenomenology of neutrino oscillations in vacuum and in matter. We present the existing evidence from solar and atmospheric neutrinos as well as the results from laboratory searches, including the final status of the LSND experiment. We describe the theoretical inputs that are used to interpret the experimental results in terms of neutrino oscillations. We derive the allowed ranges for the mass and mixing parameters in three frameworks: First, each set of observations is analyzed separately in a two-neutrino framework; Second, the data from solar and atmospheric neutrinos are analyzed in a three active neutrino framework; Third, the LSND results are added, and the status of accommodating all three signals in the framework of three active and one sterile light neutrinos is presented. We review the theoretical implications of these results: the existence of new physics, the estimate of the scale of this new physics and the lessons for grand unified theories, for supersymmetric models with R-parity violation, for models of extra dimensions and singlet fermions in the bulk, and for flavor models.Comment: Added note on the effects of KamLAND results. Two new figure

    ASKAP commissioning observations of the GAMA 23 field

    Get PDF
    © Astronomical Society of Australia 2019. We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ∼48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ∼39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ∼0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ∼30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (∼6%) to have an AGN than radio quiet galaxies (∼1%), but the majority of AGN are not detected in radio at this sensitivity
    corecore