9 research outputs found
Three-dimensional scapular morphology is associated with rotator cuff tears and alters the abduction moment arm of the supraspinatus.
BACKGROUND: Numerous studies have reported an association between rotator cuff injury and two-dimensional measures of scapular morphology. However, the mechanical underpinnings explaining how these shape features affect glenohumeral joint function and lead to injury are poorly understood. We hypothesized that three-dimensional features of scapular morphology differentiate asymptomatic shoulders from those with rotator cuff tears, and that these features would alter the mechanical advantage of the supraspinatus.
METHODS: Twenty-four individuals with supraspinatus tears and twenty-seven age-matched controls were recruited. A statistical shape analysis identified scapular features distinguishing symptomatic patients from asymptomatic controls. We examined the effect of injury-associated morphology on mechanics by developing a morphable model driven by six degree-of-freedom biplanar videoradiography data. We used the model to simulate abduction for a range of shapes and computed the supraspinatus moment arm.
FINDINGS: Rotator cuff injury was associated with a cranial orientation of the glenoid and scapular spine (P = .011, d = 0.75) and/or decreased subacromial space (P = .001, d = 0.94). The shape analysis also identified previously undocumented features associated with superior inclination and subacromial narrowing. In our computational model, warping the scapula from a cranial to a lateral orientation increased the supraspinatus moment arm at 20° of abduction and decreased the moment arm at 160° of abduction.
INTERPRETATIONS: Three-dimensional analysis of scapular morphology indicates a stronger relationship between morphology and cuff tears than two-dimensional measures. Insight into how morphological features affect rotator cuff mechanics may improve patient-specific strategies for prevention and treatment of cuff tears
Contributions of Muscles and External Forces to Medial Knee Load Reduction Due to Osteoarthritis Braces
Background
Braces for medial knee osteoarthritis can reduce medial joint loads through a combination of three mechanisms: application of an external brace abduction moment, alteration of gait dynamics, and reduced activation of antagonistic muscles. Although the effect of knee bracing has been reported independently for each of these parameters, no previous study has quantified their relative contributions to reducing medial knee loads.
Methods
In this study, we used a detailed musculoskeletal model to investigate immediate changes in medial and lateral loads caused by two different knee braces: OA Assist and OA Adjuster 3 (DJO Global). Seventeen osteoarthritis subjects and eighteen healthy controls performed overground gait trials in unbraced and braced conditions.
Results
Across all subjects, bracing reduced medial loads by 0.1 to 0.3 times bodyweight (BW), or roughly 10%, and increased lateral loads by 0.03 to 0.2 BW. Changes in gait kinematics due to bracing were subtle, and had little effect on medial and lateral joint loads. The knee adduction moment was unaltered unless the brace moment was included in its computation. Only one muscle, biceps femoris, showed a significant change in EMG with bracing, but this did not contribute to altered peak medial contact loads.
Conclusions
Knee braces reduced medial tibiofemoral loads primarily by applying a direct, and substantial, abduction moment to each subject's knee. To further enhance brace effectiveness, future brace designs should seek to enhance the magnitude of this unloader moment, and possibly exploit additional kinematic or neuromuscular gait modifications
Experimental Validation of Finite Element Analysis of Human Vertebral Collapse Under Large Compressive Strains
Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towardsthe prediction of extended vertebral collapse may help in assessing fracture stability in future work
Validation of an IMU Suit for Military-Based Tasks
Investigating the effects of load carriage on military soldiers using optical motion capture is challenging. However, inertial measurement units (IMUs) provide a promising alternative. Our purpose was to compare optical motion capture with an Xsens IMU system in terms of movement reconstruction using principal component analysis (PCA) using correlation coefficients and joint kinematics using root mean squared error (RMSE). Eighteen civilians performed military-type movements while their motion was recorded using both optical and IMU-based systems. Tasks included walking, running, and transitioning between running, kneeling, and prone positions. PCA was applied to both the optical and virtual IMU markers, and the correlations between the principal component (PC) scores were assessed. Full-body joint angles were calculated and compared using RMSE between optical markers, IMU data, and virtual markers generated from IMU data with and without coordinate system alignment. There was good agreement in movement reconstruction using PCA; the average correlation coefficient was 0.81 ± 0.14. RMSE values between the optical markers and IMU data for flexion-extension were less than 9°, and 15° for the lower and upper limbs, respectively, across all tasks. The underlying biomechanical model and associated coordinate systems appear to influence RMSE values the most. The IMU system appears appropriate for capturing and reconstructing full-body motion variability for military-based movements