146 research outputs found

    A Comparison of Wrist and Hip Accelerometer Output at Different Walking Speeds

    Get PDF
    Physical activity has been objectively measured using hip-worn accelerometers for decades. However, wrist-worn accelerometers are currently used in large-scale studies. Differences in wrist and hip dynamics during locomotion may affect monitor output, which may impact how prediction models are built. PURPOSE: To compare ActiGraph™ wrist and hip accelerations (g’s) at varying locomotion speeds. METHODS: Participants (N = 7) wore ActiGraph™ GT3X+ accelerometers on the dominant wrist and hip (sampling rate 80Hz). They performed three 5-minute trials at self-paced (SP), slow (SL), and fast (F) over-ground walking speeds. Mean and standard deviation of the vector magnitude (VM) were calculated from two 20-s data windows per condition. Linear mixed-effects models were used to determine if the relationship was different between speed and vector VM at the hip and wrist. RESULTS: Significant differences were found between the slopes (speed vs VM) of the hip m = 0.052 (95% CI: 0.033, 0.103) compared to the wrist m = 0.195 (95% CI: 0.160, 0.230) p\u3c0.001. DISCUSSION: The results show that ActiGraph™ wrist and hip accelerations (g’s) differ at varying locomotion speeds. There is a curvilinear increase in VM at the wrist as locomotion speed increases, whereas there is a linear increase in VM at the hip as locomotion speed increases. The pattern of change of wrist VM is different and more variable between subjects compared to hip VM, which may impact measurement error and model development. Additionally, wrist VM is more responsive to changes in speed than hip VM, suggesting that a wrist worn accelerometer may be more sensitive to locomotion intensity

    Potential health effects of dietary nitrate supplementation in aging and chronic degenerative disease

    Get PDF
    In the United States, latest projections indicate the number of adults 65 years of age and older is expected to double by 2050. Given that increased oxidative stress is a hallmark of aging, it is understandable that waning nitric oxide and chronic degenerative disease arise in tandem. To this end, translational evidence-based strategies are needed to mitigate the impending toll on personal and public health. Dietary nitrate supplementation, particularly in the form of beetroot juice, is an active area of inquiry that has gained considerable attention in recent years. Compelling evidence has revealed beetroot juice can elicit potent physiological responses that may offer associated health benefits for multiple clinical disorders including hypertension, dementia, and sarcopenia. Even in the absence of overt disease, age-related impairments in cardiovascular and skeletal muscle function may uniquely benefit from beetroot juice supplementation as evidence has shown blood pressure lowering effects and improved muscle function/contractility – presumably from increased nitric oxide bioavailability. This, in turn, presents a practical opportunity for susceptible populations to support ease of movement and exercise tolerance, both of which may promote free-living physical activity. A theoretical rationale details the potential health effects of dietary nitrate supplementation, wherein a working framework hypothesizes beetroot juice consumption prior to structured exercise training may offer synergistic benefits to aid healthy aging and independent-living among older adults

    Using wearable technology data to explain recreational running injury: A prospective longitudinal feasibility study

    Get PDF
    Objectives Investigate 1) if collecting and analysing wristwatch inertial measurement unit (IMU) and global positioning system (GPS) data using a commercially-available training platform was feasible in recreational runners and 2) which variables were associated with subsequent injury. Design Prospective longitudinal cohort. Participants Healthy recreational runners. Main outcome measures We set a priori feasibility thresholds for recruitment (maximum six-months), acceptance (minimum 80%), adherence (minimum 70%), and data collection (minimum 80%). Participants completed three patient-reported outcome measures (PROMS) detailing their psychological health, sleep quality, and intrinsic motivation to run. We extracted baseline anthropometric, biomechanical, metabolic, and training load data their IMU/GPS wristwatch for analysis. Participants completed a weekly injury status surveillance questionnaire over the next 12-weeks. Feasibility outcomes were analysed descriptively and injured versus non-injured group differences with 95% confidence intervals were calculated for PROM/IMU/GPS data. Results 149 participants consented; 86 participants completed (55 men, 31 women); 21 developed an injury (0.46 injuries/1000 km). Feasibility outcomes were satisfied (recruitment = 47 days; acceptance = 133/149 [89%]; adherence = 93/133 [70%]; data collection = 86/93 [92%]). Acute load by calculated effort was associated with subsequent injury (mean difference −562.14, 95% CI -1019.42, −21.53). Conclusion Collecting and analysing wristwatch IMU/GPS data using a commercially-available training platform was feasible in recreational runners

    Beetroot supplementation in women enjoying exercise together (BEE SWEET): Rationale, design and methods

    Get PDF
    Background: Postmenopausal women exhibit higher rates of disability and cardiovascular disease (CVD) with aging compared to men. Whereas habitual exercise training is a known strategy to enhance physiologic function in men and premenopausal women, exercise-related adaptations are often modest in postmenopausal women. We propose dietary nitrate (beetroot juice) administered prior to exercise training may be a feasible approach to improve mobility and cardio-metabolic health outcomes in postmenopausal women. Methods: Our randomized, placebo-controlled study aims to determine preliminary effects sizes for changes in functional mobility and endothelium-dependent vasodilation across three study arms: exercise only (EX), exercise + placebo (EX + PL), and exercise + beetroot (EX + BR). Thirty-six postmenopausal women are recruited in small cohorts wherein group exercise is implemented to facilitate social support and adherence to an 8-week training progression. Participants are randomized to one of three study arms (n = 12 per group) following baseline assessments. Post-intervention assessments are used to determine pre-post changes in outcome measures including distance covered during a 6 min walk test, walking economy, muscle speed and power, and endothelial-dependent vasodilation as determined by flow-mediated dilation. Measures of feasibility include recruitment, retention, adherence to exercise prescription, perceived exercise session difficulty, and adverse event rates. Discussion: Evidence-based, translational strategies are needed to optimize exercise training-related adaptations in postmenopausal women. Findings will inform larger randomized clinical trials to determine if pre-exercise consumption of beetroot juice is an efficacious strategy to promote mobility and attenuate CVD disease risk

    The Copenhagen Diagnosis: Updating the World on the Latest Climate Science

    Get PDF
    The Copenhagen Diagnosis is a summary of the global warming peer reviewed science since 2007. Produced by a team of 26 scientists led by the University of New South Wales Climate Research Centre, the Diagnosis convincingly proves that the effects of global warming have gotten worse in the last three years. It is a timely update to the UN’s Intercontinental Panel on Climate Change 2007 Fourth Assessment document (IPCC AR4). The report places the blame for the century long temperature increase on human factors and says the turning point ";must come soon";. If we are to limit warming to 2 degrees above pre-industrial values, global emissions must peak by 2020 at the latest and then decline rapidly. The scientists warned that waiting for higher levels of scientific certainty could mean that some tipping points will be crossed before they are recognized. By 2050 we will effectively need to be in a post-carbon economy if we are to avoid unlivable temperatures

    Differentiation-Dependent Secretion of Proangiogenic Factors by Mesenchymal Stem Cells

    Get PDF
    Mesenchymal stem cells (MSCs) are a promising cell population for cell-based bone repair due to their proliferative potential, ability to differentiate into bone-forming osteoblasts, and their secretion of potent trophic factors that stimulate angiogenesis and neovascularization. To promote bone healing, autogenous or allogeneic MSCs are transplanted into bone defects after differentiation to varying degrees down the osteogenic lineage. However, the contribution of the stage of osteogenic differentiation upon angiogenic factor secretion is unclear. We hypothesized that the proangiogenic potential of MSCs was dependent upon their stage of osteogenic differentiation. After 7 days of culture, we observed the greatest osteogenic differentiation of MSCs when cells were cultured with dexamethasone (OM+). Conversely, VEGF protein secretion and upregulation of angiogenic genes were greatest in MSCs cultured in growth media (GM). Using conditioned media from MSCs in each culture condition, GM-conditioned media maximized proliferation and enhanced chemotactic migration and tubule formation of endothelial colony forming cells (ECFCs). The addition of a neutralizing VEGF165/121 antibody to conditioned media attenuated ECFC proliferation and chemotactic migration. ECFCs seeded on microcarrier beads and co-cultured with MSCs previously cultured in GM in a fibrin gel exhibited superior sprouting compared to MSCs previously cultured in OM+. These results confirm that MSCs induced farther down the osteogenic lineage possess reduced proangiogenic potential, thereby providing important findings for consideration when using MSCs for bone repair

    Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity.</p> <p>Results</p> <p>We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants.</p> <p>Conclusion</p> <p>Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.</p

    Impact of renal impairment on atrial fibrillation: ESC-EHRA EORP-AF Long-Term General Registry

    Get PDF
    Background: Atrial fibrillation (AF) and renal impairment share a bidirectional relationship with important pathophysiological interactions. We evaluated the impact of renal impairment in a contemporary cohort of patients with AF. Methods: We utilised the ESC-EHRA EORP-AF Long-Term General Registry. Outcomes were analysed according to renal function by CKD-EPI equation. The primary endpoint was a composite of thromboembolism, major bleeding, acute coronary syndrome and all-cause death. Secondary endpoints were each of these separately including ischaemic stroke, haemorrhagic event, intracranial haemorrhage, cardiovascular death and hospital admission. Results: A total of 9306 patients were included. The distribution of patients with no, mild, moderate and severe renal impairment at baseline were 16.9%, 49.3%, 30% and 3.8%, respectively. AF patients with impaired renal function were older, more likely to be females, had worse cardiac imaging parameters and multiple comorbidities. Among patients with an indication for anticoagulation, prescription of these agents was reduced in those with severe renal impairment, p&nbsp;&lt;.001. Over 24&nbsp;months, impaired renal function was associated with significantly greater incidence of the primary composite outcome and all secondary outcomes. Multivariable Cox regression analysis demonstrated an inverse relationship between eGFR and the primary outcome (HR 1.07 [95% CI, 1.01–1.14] per 10&nbsp;ml/min/1.73&nbsp;m2 decrease), that was most notable in patients with eGFR &lt;30&nbsp;ml/min/1.73&nbsp;m2 (HR 2.21 [95% CI, 1.23–3.99] compared to eGFR ≥90&nbsp;ml/min/1.73&nbsp;m2). Conclusion: A significant proportion of patients with AF suffer from concomitant renal impairment which impacts their overall management. Furthermore, renal impairment is an independent predictor of major adverse events including thromboembolism, major bleeding, acute coronary syndrome and all-cause death in patients with AF
    corecore