454 research outputs found

    Measuring the Autistic Women's Experience (AWE)

    Get PDF
    We developed a Dutch questionnaire called the Autistic Women's Experience (AWE) and compared its psychometric properties to the Autism Spectrum Quotient (AQ). Whilst attenuated gender differences on the AQ have been widely replicated, this instrument may not fully capture the unique experience of autistic women. The AWE was co-developed with autistic women to include items that reflect autistic women's experience. We investigated the AWE (49 items) and compared it with the AQ (50 items) in Dutch autistic individuals ( N = 153, n = 85 women) and in the general population ( N = 489, n = 246 women) aged 16+. Both the AQ and AWE had excellent internal consistency and were highly and equally predictive of autism in both women and men. Whilst there was a gender difference on the AQ among non-autistic people (men &gt; women), there was no gender difference among autistic people, confirming all earlier studies. No gender differences were detected on the AWE overall scale, yet subtle gender differences were observed on the subscales. We conclude that the AQ is valid for both genders, but the AWE provides an additional useful perspective on the characteristics of autistic women. The AWE needs further validation in independent samples using techniques that allow for testing gender biases, as well as a confirmatory factor analysis in a larger sample. </p

    Measuring the Autistic Women's Experience (AWE)

    Get PDF
    We developed a Dutch questionnaire called the Autistic Women's Experience (AWE) and compared its psychometric properties to the Autism Spectrum Quotient (AQ). Whilst attenuated gender differences on the AQ have been widely replicated, this instrument may not fully capture the unique experience of autistic women. The AWE was co-developed with autistic women to include items that reflect autistic women's experience. We investigated the AWE (49 items) and compared it with the AQ (50 items) in Dutch autistic individuals ( N = 153, n = 85 women) and in the general population ( N = 489, n = 246 women) aged 16+. Both the AQ and AWE had excellent internal consistency and were highly and equally predictive of autism in both women and men. Whilst there was a gender difference on the AQ among non-autistic people (men &gt; women), there was no gender difference among autistic people, confirming all earlier studies. No gender differences were detected on the AWE overall scale, yet subtle gender differences were observed on the subscales. We conclude that the AQ is valid for both genders, but the AWE provides an additional useful perspective on the characteristics of autistic women. The AWE needs further validation in independent samples using techniques that allow for testing gender biases, as well as a confirmatory factor analysis in a larger sample. </p

    Study of Bc --> J/psi pi, etac pi decays with perturbative QCD approach

    Full text link
    The Bc --> J/psi pi, etac pi decays are studied with the perturbative QCD approach. It is found that form factors and branching ratios are sensitive to the parameters w, v, f_J/psi and f_etac, where w and v are the parameters of the charmonium wave functions for Coulomb potential and harmonic oscillator potential, respectively, f_J/psi and f_etac are the decay constants of the J/psi and etac mesons, respectively. The large branching ratios and the clear signals of the final states make the Bc --> J/psi pi, etac pi decays to be the prospective channels for measurements at the hadron collidersComment: 21 pages, revtex

    Self-oligomerization Regulates Stability of Survival Motor Neuron Protein Isoforms by Sequestering an SCF\u3csup\u3eSlmb\u3c/sup\u3e Degron

    Get PDF
    Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table

    Inhibition of Apoptosis Blocks Human Motor Neuron Cell Death in a Stem Cell Model of Spinal Muscular Atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC) lines generated from two Type I SMA subjects–one produced with lentiviral constructs and the second using a virus-free plasmid–based approach–recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients

    Study of DJ meson decays to D+π−, D0π+ and D∗+π− final states in pp collisions

    Get PDF
    A study of D+π−, D0π+ and D∗+π− final states is performed using pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV with the LHCb detector. The D1(2420)0 resonance is observed in the D∗+π− final state and the D∗2(2460) resonance is observed in the D+π−, D0π+ and D∗+π− final states. For both resonances, their properties and spin-parity assignments are obtained. In addition, two natural parity and two unnatural parity resonances are observed in the mass region between 2500 and 2800 MeV. Further structures in the region around 3000 MeV are observed in all the D∗+π−, D+π− and D0π+ final states

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Chromosome 7 and 19 Trisomy in Cultured Human Neural Progenitor Cells

    Get PDF
    BACKGROUND:Stem cell expansion and differentiation is the foundation of emerging cell therapy technologies. The potential applications of human neural progenitor cells (hNPCs) are wide ranging, but a normal cytogenetic profile is important to avoid the risk of tumor formation in clinical trials. FDA approved clinical trials are being planned and conducted for hNPC transplantation into the brain or spinal cord for various neurodegenerative disorders. Although human embryonic stem cells (hESCs) are known to show recurrent chromosomal abnormalities involving 12 and 17, no studies have revealed chromosomal abnormalities in cultured hNPCs. Therefore, we investigated frequently occurring chromosomal abnormalities in 21 independent fetal-derived hNPC lines and the possible mechanisms triggering such aberrations. METHODS AND FINDINGS:While most hNPC lines were karyotypically normal, G-band karyotyping and fluorescent in situ hybridization (FISH) analyses revealed the emergence of trisomy 7 (hNPC(+7)) and trisomy 19 (hNPC(+19)), in 24% and 5% of the lines, respectively. Once detected, subsequent passaging revealed emerging dominance of trisomy hNPCs. DNA microarray and immunoblotting analyses demonstrate epidermal growth factor receptor (EGFR) overexpression in hNPC(+7) and hNPC(+19) cells. We observed greater levels of telomerase (hTERT), increased proliferation (Ki67), survival (TUNEL), and neurogenesis (beta(III)-tubulin) in hNPC(+7) and hNPC(+19), using respective immunocytochemical markers. However, the trisomy lines underwent replicative senescence after 50-60 population doublings and never showed neoplastic changes. Although hNPC(+7) and hNPC(+19) survived better after xenotransplantation into the rat striatum, they did not form malignant tumors. Finally, EGF deprivation triggered a selection of trisomy 7 cells in a diploid hNPC line. CONCLUSIONS:We report that hNPCs are susceptible to accumulation of chromosome 7 and 19 trisomy in long-term cell culture. These results suggest that micro-environmental cues are powerful factors in the selection of specific hNPC aneuploidies, with trisomy of chromosome 7 being the most common. Given that a number of stem cell based clinical trials are being conducted or planned in USA and a recent report in PLoS Medicine showing the dangers of grafting an inordinate number of cells, these data substantiate the need for careful cytogenetic evaluation of hNPCs (fetal or hESC-derived) before their use in clinical or basic science applications
    • 

    corecore