65 research outputs found

    Current developments and future directions in COPD

    Get PDF
    The European Respiratory Society journals publish respiratory research and policy documents of the highest quality, offering a platform for the exchange and promotion of scientific knowledge. In this article, focusing on COPD, the third leading cause of death globally, we summarise novel research highlights focusing on the disease's underlying mechanisms, epidemiology and management, with the aim to inform and inspire respiratory clinicians and researchers

    Effects of different antibiotic classes on airway bacteria in stable COPD using culture and molecular techniques: a randomised controlled trial

    Get PDF
    Long-term antibiotic therapy is used to prevent exacerbations of COPD but there is uncertainty over whether this reduces airway bacteria. The optimum antibiotic choice remains unknown. We conducted an exploratory trial in stable patients with COPD comparing three antibiotic regimens against placebo

    18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy.

    Get PDF
    The ability to assess the distribution and extent of tau pathology in Alzheimer's disease and progressive supranuclear palsy in vivo would help to develop biomarkers for these tauopathies and clinical trials of disease-modifying therapies. New radioligands for positron emission tomography have generated considerable interest, and controversy, in their potential as tau biomarkers. We assessed the radiotracer 18F-AV-1451 with positron emission tomography imaging to compare the distribution and intensity of tau pathology in 15 patients with Alzheimer's pathology (including amyloid-positive mild cognitive impairment), 19 patients with progressive supranuclear palsy, and 13 age- and sex-matched controls. Regional analysis of variance and a support vector machine were used to compare and discriminate the clinical groups, respectively. We also examined the 18F-AV-1451 autoradiographic binding in post-mortem tissue from patients with Alzheimer's disease, progressive supranuclear palsy, and a control case to assess the 18F-AV-1451 binding specificity to Alzheimer's and non-Alzheimer's tau pathology. There was increased 18F-AV-1451 binding in multiple regions in living patients with Alzheimer's disease and progressive supranuclear palsy relative to controls [main effect of group, F(2,41) = 17.5, P 2.2, P's 2.7, P's < 0.02). The support vector machine assigned patients' diagnoses with 94% accuracy. The post-mortem autoradiographic data showed that 18F-AV-1451 strongly bound to Alzheimer-related tau pathology, but less specifically in progressive supranuclear palsy. 18F-AV-1451 binding to the basal ganglia was strong in all groups in vivo. Postmortem histochemical staining showed absence of neuromelanin-containing cells in the basal ganglia, indicating that off-target binding to neuromelanin is an insufficient explanation of 18F-AV-1451 positron emission tomography data in vivo, at least in the basal ganglia. Overall, we confirm the potential of 18F-AV-1451 as a heuristic biomarker, but caution is indicated in the neuropathological interpretation of its binding. Off-target binding may contribute to disease profiles of 18F-AV-1451 positron emission tomography, especially in primary tauopathies such as progressive supranuclear palsy. We suggest that 18F-AV-1451 positron emission tomography is a useful biomarker to assess tau pathology in Alzheimer's disease and to distinguish it from other tauopathies with distinct clinical and pathological characteristics such as progressive supranuclear palsy.This study was funded by the National Institute for Health Research (NIHR, RG64473) Cambridge Biomedical Research Centre and Biomedical Research Unit in Dementia, PSP Association, the Wellcome Trust (JBR 103838), the Medical Research Council of Cognition and Brain Sciences Unit, Cambridge (MC-A060-5PQ30), and partially by a Medical Research Council grant (MR/K02308X/1) held by J.T.O., J.B.R., and F.I.A. The Human Research Tissue Bank is supported by the NIHR Cambridge Biomedical Research Centre

    In vivo 18F-flortaucipir PET does not accurately support the staging of progressive supranuclear palsy

    Get PDF
    Progressive Supranuclear Palsy (PSP) is a neurodegenerative disorder characterised by neuro-glial tau pathology. A new staging system for PSP pathology at post-mortem has been described and validated. We used a data-driven approach to test whether post-mortem pathological staging in PSP can be reproduced in vivo with 18F-flortaucipir PET. Methods: N=42 patients with probable PSP and N=39 controls underwent 18F-flortaucipir PET. Conditional inference tree analyses on regional binding potential values identified absent/present pathology thresholds to define in vivo staging. Following the staging system for PSP pathology, the combination of absent/present values across all regions was evaluated to assign each participant to in vivo stages. Analysis of variance was applied to analyse differences among means of disease severity between stages. In vivo staging was compared with post-mortem staging in N=9 patients who also had post-mortem confirmation of the diagnosis and stage. Results: Stage assignment was estimable in 41 patients: N=10 patients were classified in stage I/II, N=26 in stage III/IV, N=5 in stage V/VI, while N=1 was not classifiable. An explorative sub-staging identified N=2 patients in stage I, N=8 in stage II, N=9 in stage III, N=17 in stage IV and N=5 in stage V. However, the nominal 18F-flortaucipir derived stage was not associated with clinical severity and was not indicative of pathology staging at post-mortem. Conclusion: 18F-flortaucipir PET in vivo does not correspond to neuropathological staging in PSP. This analytic approach, seeking to mirror in vivo the neuropathology staging with PET-to-autopsy correlational analyses might enable in vivo staging with next-generation PET tracers for tau, but further evidence and comparison with post-mortem data are needed.This study was co-funded by the Cambridge University Centre for Parkinson-Plus (RG95450); the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC-1215-20014), including their financial support for the Cambridge Brain Bank; the PSP Association (“MAPT-PSP” award); the Alzheimer’s Research UK East-Network pump priming grant; the Wellcome trust (220258); the Medical Research Council (MR/P01271X/1; G1100464); the Association of British Neurologists, Patrick Berthoud Charitable Trust (RG99368); Alzheimer’s Society (443 AS JF 18017); the Evelyn Trust (RG84654), and RCUK/UKRI (via a Research Innovation Fellowship awarded by the Medical Research Council to CHWG - MR/R007446/1); the Guarantors of Brain (G101149). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care

    Erythromyeloid derived TREM2: a major determinant of Alzheimer’s disease pathology in Down syndrome.

    Get PDF
    Background: Down syndrome (DS; trisomy 21) individuals have a spectrum of hematopoietic and neuronal dysfunctions, and by the time they reach the age of 40 years, almost all develop Alzheimer’s disease (AD) neuropathology which include senile plaques and neurofibrillary tangles. Inflammation and innate immunity are key players in AD and DS. Triggering receptor expressed in myeloid cells-2 (TREM2) variants have been identified as risk factors for AD and other neurodegenerative diseases. Objective: To investigate the effects of TREM2 and the AD-associated R47H mutation on brain pathology and hematopoietic state in AD and DS. Methods: We analyzed peripheral blood, bone marrow, and brain tissue from DS, AD and age-matched control subjects by immunohistochemistry and Western blotting. TREM2-related phagocytosis was investigated using a human myeloid cell line. Results: TREM2 protein levels in brain and sera declined with age and disease progression in DS. We observed soluble TREM2 in the brain parenchyma that may be carried by a subset of microglia, macrophages or exosomes. Two DS cases had the AD-associated TREM2-R47H mutation, which manifested a morphologically extreme phenotype of megakaryocytes and erythrocytes in addition to impaired trafficking of TREM2 to the erythroid membrane. TREM2 was shown to be involved in phagocytosis of red blood cells. TREM2 was seen in early and late endosomes. Silencing TREM2 using siRNA in THP1 cells resulted in significant cell death. Conclusion: We provide evidence that peripheral TREM2 originating from erythromyeloid cells significantly determines AD neuropathology in DS subjects. Understanding the molecular signaling pathways mediated by TREM2 may reveal novel therapeutic targets.This research was funded by Medical Research Council (MRC grant number RNAG/254), National Institute of Health Research (NIHR), the Down’s Syndrome Association, The John Van Geest Foundation and Cambridgeshire and Peterborough Foundation NHS Trust, Cambridge, UK
    • …
    corecore