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Abstract
Objective
We tested whether in vivo neuroinflammation relates to the distinctive distributions of pathology
in Alzheimer disease (AD) and progressive supranuclear palsy (PSP).

Methods
Sixteen patients with symptomatic AD (including amnestic mild cognitive impairment with
amyloid-positive PET scan), 16 patients with PSP–Richardson syndrome, and 13 age-, sex-, and
education-matched healthy controls were included in this case-control study. Participants un-
derwent [11C]PK11195 PET scanning, which was used as an in vivo index of neuroinflammation.

Results
[11C]PK11195 binding in the medial temporal lobe and occipital, temporal, and parietal
cortices was increased in patients with AD, relative both to patients with PSP and to controls.
Compared to controls, patients with PSP showed elevated [11C]PK11195 binding in the
thalamus, putamen, and pallidum. [11C]PK11195 binding in the cuneus/precuneus correlated
with episodic memory impairment in AD, while [11C]PK11195 binding in the pallidum,
midbrain, and pons correlated with disease severity in PSP.

Conclusions
Together, our results suggest that neuroinflammation has an important pathogenic role in the 2
very different human neurodegenerative disorders of AD and PSP. The increase and distri-
bution of microglial activation suggest that immunotherapeutic strategies may be useful in
slowing the progression of both diseases.
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There is evidence that microglia show increased activation in
Alzheimer disease (AD), Parkinson disease, Huntington dis-
ease, and progressive supranuclear palsy (PSP).1–12 Further-
more, genetic association studies in AD reveal variations in
genes that contribute to immune signaling as risk factors.13

This raises the possibility of immune-therapeutic strategies for
prevention and disease modification.

However, key issues need to be addressed before such strat-
egies can be applied, including the confirmation of clinico-
pathologic correlations of neuroinflammation and the
establishment of the potential utility of biomarkers for mea-
suring and tracking neuroinflammation in vivo. Despite the
importance of neuroinflammation, there is still insufficient
information regarding the extent and regional distribution of
microglial activation in patients with neurodegenerative
conditions, and their association with clinical markers of
disease severity or their relationship to systemic inflammatory
markers.

[11C]PK11195 is a well-established PET marker of in vivo
microglial activation,1,2,6–8,10,14 although microglial activation
represents only part of the complex cascade of events in
neuroinflammation.15 Here, we assessed the magnitude and
patterns of [11C]PK11195 binding in 2 very different neu-
rodegenerative entities, AD and PSP, characterized by distinct
anatomical distributions of pathology. The value of this
comparison does not lie in the differential diagnosis between
these clinically diverse entities but rather in establishing the
distribution of neuroinflammation in 2 distinct tauopathies.
We tested whether [11C]PK11195 binding relates to the
distinctive distributions of pathology in typical amnestic AD
and PSP–Richardson syndrome, and whether [11C]PK11195
binding relates to different measures of clinical severity in AD
and PSP.

Methods
Participants
The current study was conducted within the context of the
NIMROD (Neuroimaging of Inflammation in Memory and
Related Other Disorders) Study.16 We recruited 16 PSP
patients with probable PSP by the 1996 Movement Disorder
Society criteria (representing a “classic phenotype,” which is
sometimes referred to as Richardson syndrome), but all
patients also met 2017 revised criteria for probable PSP–
Richardson syndrome17,18; 9 patients met diagnostic criteria
for probable AD19 (typical amnestic phenotype, without

biomarkers) and 7 patients had amnestic mild cognitive im-
pairment (MCI). The patients with amnestic MCI had (1)
a Mini-Mental State Examination (MMSE) score of >24/30,
(2) memory impairment at least 1.5 SDs below that expected
for age and education,20 and (3) biomarker evidence of am-
yloid pathology (positive Pittsburgh compound B [PiB]-PET
scan) (MCI+). Thirteen age-, sex-, and education-matched
healthy controls with no history of major psychiatric or
neurologic illnesses, head injury, or any other significant
medical comorbidity were also recruited. All participants were
older than 50 years, had sufficient proficiency in English for
cognitive testing, did not have any acute infectious or symp-
tomatic systemic inflammatory disorder (e.g., lupus, rheu-
matoid arthritis, Crohn disease, polymyalgia rheumatica), and
had no contraindications to MRI. Patients were identified
from the specialist clinics at the Cambridge University Hos-
pitals NHS Trust and the Dementias and Neurodegenerative
Diseases Research Network, while healthy controls were
recruited via the Dementias and Neurodegenerative Diseases
Research Network, which is part of the National Institute for
Health Research (NIHR)Clinical Research Network (nihr.ac.
uk/nihr-in-your-area/dementias-and-neurodegeneration/).

Standard protocol approvals, registrations,
and patient consents
All participants had mental capacity, and we obtained in-
formed written consent from patients (as principal partic-
ipants) and patients’ designated informants (for providing
informant information) in accordance with the Declaration
of Helsinki. The study was approved by the local ethics
committee.

Clinical, cognitive, and blood assessment
Participants’ assessment included clinical indices of disease
severity, such as Rey Auditory Verbal Learning Test
(RAVLT) in AD/MCI+ patients and Progressive Supra-
nuclear Palsy Rating Scale (PSPRS) in patients with PSP.21

Demographic measures and neuropsychological tests
(i.e., MMSE and Addenbrooke’s Cognitive Examination–
Revised) as well as a blood sample to assess the levels of 3
basic peripheral markers of inflammation (i.e., C-reactive
protein [CRP], erythrocyte sedimentation rate [ESR], and
white blood cell count) were also obtained from all partic-
ipants. The CRP, ESR, and white blood cell biomarkers
were included on the basis that peripheral inflammation
may facilitate the development of neuroinflammation and
neurodegeneration,22–24 and such peripheral markers might
augment the monitoring of immunotherapeutic trials if re-
lated to central inflammation.

Glossary
AD = Alzheimer disease; BPND = nondisplaceable binding potential; CRP = C-reactive protein; ESR = erythrocyte
sedimentation rate; MCI = mild cognitive impairment;MMSE = Mini-Mental State Examination; NIHR = National Institute
for Health Research; PiB = Pittsburgh compound B; PSP = progressive supranuclear palsy; PSPRS = Progressive Supranuclear
Palsy Rating Scale; RAVLT = Rey Auditory Verbal Learning Test; ROI = region of interest; TSPO = translocator protein.
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Neuroimaging assessment
All participants underwent MRI on a 3T Siemens Magnetom
Tim Trio or Verio scanner (medical.siemens.com) using
a magnetization-prepared rapid-acquisition gradient echo T1-
weighted sequence. The T1-weighted sequence (repetition
time = 2,300milliseconds, echo time = 2.98 milliseconds, field
of view = 240 × 256 mm2, 176 slices of 1-mm thickness, flip
angle = 9°) was used to facilitate tissue class segmentation
(gray and white matter, together with CSF) and to allow
nonrigid registration of standard space regions of interest
(ROIs) to subject MRI space (using a modified version of the
Hammers atlas, which included the midbrain, pons, cerebellar
gray matter, and dentate nucleus of the cerebellum ROIs).
Each T1 image was nonrigidly registered to the ICBM2009a
template brain using ANTS (picsl.upenn.edu/ANTS/), and
the inverse transform was applied to the modified Hammers
atlas (resliced from MNI152 to ICBM2009a space) to bring
the ROIs to subject MRI space.

All participants underwent [11C]PK11195 PET imaging for
assessment of the extent and distribution of brain in-
flammation. [11C]PK11195 and [11C]PiB were produced
with high radiochemical purity (>95%), with [11C]PiB
having a specific activity >150 GBq/μmol at the end of
synthesis, while [11C]PK11195 specific activity was around
85 GBq/μmol at the end of synthesis. PET scanning was
performed with a GE Advance PET scanner (GE Healthcare,
Waukesha, WI) and a GE Discovery 690 PET/CT, with
attenuation correction provided by a 15-minute 68Ge/68Ga
transmission scan and a low-dose CT scan, respectively. The
emission protocols were 550 MBq [11C]PiB injection fol-
lowed by imaging from 40 to 70 minutes post injection, and
75 minutes of dynamic imaging (55 frames) starting con-
currently with a 500-MBq [11C]PK11195 injection. Each
emission frame was reconstructed using the PROMIS
3-dimensional filtered back projection algorithm into a 128 ×
128 matrix 30-cm transaxial field of view, with a transaxial
Hann filter cutoff at the Nyquist frequency.25 Corrections
were applied for randoms, dead time, normalization, scatter,
attenuation, and sensitivity. Each emission image series was
aligned using SPM8 to reduce the effect of patient motion
during data acquisition (fil.ion.ucl.ac.uk).

The mean aligned PET image (and hence the corresponding
aligned PET image series) was rigidly registered to the T1-
weighted MRI. For [11C]PiB, we used reference tissue ROI
defined by ≥90% on the SPM8 gray matter probability map
(smoothed to PET resolution) in the superior cerebellar
cortex.26 For [11C]PK11195, supervised cluster analysis was
used to determine the reference tissue time-activity curve.27

All ROI data were corrected for CSF contamination through
division with the mean ROI probability (normalized to 1) of
gray + white matter, using SPM8 probability maps smoothed
to PET resolution. To test whether correction for CSF af-
fected the main results, we repeated all the [11C]PK11195

ROI PET analyses using data not corrected for CSF con-
tamination (see PET statistical analyses and results sections).

[11C]PiB data were quantified using standardized uptake
value ratio by dividing the mean CSF-corrected radioactivity
concentration in each Hammers atlas ROI by the corre-
sponding mean CSF-corrected radioactivity concentration
in the reference tissue ROI. For [11C]PK11195, non-
displaceable binding potential (BPND), a measure of specific
binding, was determined for each ROI using a basis function
implementation of the simplified reference tissue model,
both with and without CSF contamination correction.28

[11C]PK11195 BPND maps were also generated using this
basis function simplified reference tissue model approach.
[11C]PiB data were treated as dichotomous measures
(i.e., positive or negative) and considered positive if the
average standardized uptake value ratio across the cortical
ROIs was >1.5.29

To compare [11C]PK11195 binding across groups (AD/MCI
PiB+, PSP, and controls), individual ROI BPND values for
[11C]PK11195 were used in a repeated-measures general
linear model to test for the main effect of ROI, main effect of
group, and group × ROI interaction. Age and sex were in-
cluded as covariates of no interest. For the AD/MCI+ and
PSP groups, we also tested Pearson correlations between re-
gional [11C]PK11195 BPND and disease severity using the
RAVLT scores for AD/MCI+ patients and the PSPRS for
patients with PSP. Finally, we tested for associations between
neuroinflammation and peripheral markers of inflammation
using Pearson correlations.

Data availability
Anonymized data will be shared by request from any qualified
investigator.

Results
Clinical, cognitive, and blood findings
The patient and control groups were matched for age, sex,
and education (table). Nevertheless, to account for any
possible residual confounding effect associated with vari-
ability in demographic measures, age and sex were included
as covariates of no interest in the general linear models of
the main effect of ROI, the main effect of group, and
the group × ROI interaction. As expected, there was a sig-
nificant main effect of group for cognitive measures,
driven by reduced MMSE and Addenbrooke’s Cognitive
Examination–Revised scores in AD/MCI+ and PSP patients
relative to healthy controls (table). Episodic memory, as
assessed via the RAVLT (delayed recall), was significantly
impaired in AD/MCI+ patients relative to controls (table).
Although none of the participants included had acute in-
flammatory conditions (see exclusion criteria), patients with
PSP displayed higher CRP levels than AD/MCI+ patients
and controls, despite normal leukocyte count and ESR
(table).
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Neuroimaging findings
In the repeated-measures analysis of regional binding, we
found a significant main effect of ROI (F2,36 = 3.8, p < 0.001),
main effect of group (F2,36 = 5.7, p < 0.006), and a group ×
ROI interaction (F2,70 = 2.6, p < 0.001) (figure 1). The group
and interaction effects were driven in part by higher [11C]
PK11195 BPND values in the AD/MCI+ group relative to
both the PSP and control groups, in cortical and subcortical
ROIs, including occipital, parietal, and temporal cortices, as
well as in the hippocampus, amygdala, and other medial
temporal lobe ROIs (figure 1). The PSP group, relative to
controls, showed increased [11C]PK11195 BPND in the
thalamus, putamen, and pallidum (figure 1).

Repeating these analyses using ROI [11C]PK11195 BPND
values that were not corrected for CSF partial volume effects
yielded similar results (F2,36 = 2.2, p < 0.0001 for the main
effect of ROIs; F2,36 = 6.1, p < 0.006 for the main effect of
group; and F2,70 = 2.0, p < 0.0001 for the group × ROI
interaction). We then tested whether regional [11C]
PK11195 BPND related to disease severity in each clinical
group. In the AD/MCI+ group, there was a significant neg-
ative correlation between the RAVLT scores (delayed recall
at 30 minutes) and [11C]PK11195 BPND in the precuneus
(figure 2A). In the PSP group, we found a significant positive
correlation for [11C]PK11195 BPND in the pallidum, mid-
brain, and pons and disease severity, as assessed via the
PSPRS (figure 2, B–D).

Discussion
The brain regions with the most marked abnormalities of
[11C]PK11195 binding in AD/MCI+ and PSP groups were
those predicted from the established distribution of neuro-
degeneration of each disease. Specifically, patients with
amnestic AD/MCI+ had evidence of increased neuro-
inflammation in the medial temporal lobe as well as parietal
and lateral temporal cortices.30–33 Conversely, patients with
PSP had evidence of enhanced neuroinflammation in the
thalamus, pallidum, and putamen, a group of subcortical
regions that have been implicated in the pathophysiology of
PSP.34,35 The increased [11C]PK11195 binding in the basal
ganglia in PSP is also consistent with preliminary findings
reported in a study with 4 patients with PSP.10

Our data demonstrate that the density and distribution of
activated microglia in living patients with AD and PSP mirror
the typical neuropathologic changes characteristic of each
disorder. This could result from a causal link between neuro-
inflammation and neurodegeneration, although the associa-
tion might also derive from the process of neurodegeneration
itself. A cross-sectional and noninterventional study such as
this one cannot alone provide the direction of causality.
Nevertheless, the disease-specific anatomical distributions of
activated microglia in AD and PSP suggest a regional associ-
ation rather than a side effect of a global increased [11C]
PK11195 binding in response to a general inflammatory insult.

Table Participant details and group differences by χ2 test, one-way analysis of variance, or independent samples t test

Demographic and
clinical data AD/MCI+ (n = 16) PSP (n = 16) HCs (n = 13) Group difference

Sex, M/F 9/7 10/6 5/8 NS (per each χ2 test group comparison)

Age, y 68.7 (±8.6, 53–83) 68.4 (±5.7, 52–75) 68.0 (±5.3, 59–81) NS (per each post hoc t test group comparison)

Education, y 13.8 (±3.1, 10–19) 12.2 (±1.9, 10–17) 14.1 (±2.7, 10–19) NS (per each post hoc t test group comparison)

MMSE 25.4 (±3.0, 18–30) 27.4 (±1.9, 24–30) 28.7 (±1.0, 27–30) F = 7.60, p = 0.002 (HCs > AD,a HCs > PSP,b PSP > ADb)

ACE-R 77.5 (±11.0, 51–89) 82.3 (±10.0, 56–95) 91.3 (±5.3, 79–99) F = 7.58, p = 0.002 (HCs > AD,a HCs > PSPc)

RAVLT 1.3 (±1.4, 0–4) — 9.7 (±3.2, 3–15) T = 8.93, p < 0.0001 (HCs > ADa)

PSP Rating Scale — 40.8 (±15.0, 15–74) — —

Blood markers
of inflammation

CRP level 2.4 (±2.3, 1–9) 4.6 (1.2, 4–8) 1.6 (±1.0, 1–4) F = 10.17, p = 0.0003 (PSP > AD,c PSP > HCsa)

ESR 8.5 (±2.0, 2–17) 10.1 (±8.3, 1–32) 12.1 (±10.4, 4–36) NS (per each post hoc t test group comparison)

WBC count, ×103 7.1 (±2.3, 5.3–10.3) 6.7 (±1.2, 4.1–8.1) 6.9 (±1.7, 4.1–10.2) NS (per each post hoc t test group comparison)

Abbreviations: ACE-R = Addenbrooke’s Cognitive Examination–Revised; AD/MCI+ = Alzheimer disease/mild cognitive impairment (amyloid positive on
Pittsburgh Compound B–PET scan); CRP = C-reactive protein; ESR = erythrocyte sedimentation rate; HCs = healthy controls; MMSE = Mini-Mental State
Examination; NS = not significant at p < 0.05 (uncorrected) by analysis of variance, post hoc t test, or χ2 as appropriate; PSP = progressive supranuclear palsy;
RAVLT = Rey Auditory Verbal Learning Test (delayed recall); WBC = white blood cell.
Data are mean (±SD, range).
Post hoc independent samples t tests:
a p < 0.005.
b p < 0.05.
c p < 0.01.
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Our PET data are also in keeping with previous postmortem
findings,3 which demonstrated that microglia burden (as
assessed via LN3 immunostaining) and interleukin 1β and
transforming growth factor β expression showed a disease-
specific topological relationship with the pathologic hall-
marks of AD and PSP.3 More specifically, the previous
postmortem study3 found that patients with AD had sig-
nificantly higher microglia density and interleukin 1β ex-
pression in the parietal cortices compared to patients with
PSP and controls, while the microglia density and cytokine
expression was greater in the substantia nigra of patients
with PSP relative to patients with AD and controls.3 The
expression of transforming growth factor β was also in-
creased in frontal and parietal cortices in patients with AD
relative to patients with PSP or controls.3 Together with our
findings, these data suggest that microglia activation and
cytokine expression coexist with the pathogenic processes
underlying AD and PSP and could contribute to the process
of ongoing neurodegeneration.3 If so, this would warrant
further investigation of immune-therapeutic strategies to
modulate neuroinflammation in AD and PSP, although
evidence from earlier anti-inflammatory trials in AD remains

controversial,36,37 and no such clinical trials have been
conducted in PSP.

Our data also confirmed the hypothesis that [11C]PK11195
binding correlates with disease severity in both AD/MCI+
and PSP; more specifically, with severity of episodic memory
impairment as assessed via the RAVLT in AD/MCI+, and
with PSP severity as measured via the PSPRS in PSP. Again,
these effects were not global correlations but adhered to the
functional anatomy of cognitive and motor symptoms in AD
and PSP (i.e., cuneus/precuneus in relation to episodic
memory deficits in AD as well as the pallidum, midbrain, and
pons in relation to PSPRS in PSP).

Despite that a symptomatic acute infection and chronic
extraneural inflammatory condition were exclusion criteria of
our study, the patients with PSP showed higher levels of CRP
in the blood, a common peripheral marker of inflammation.
We acknowledge that the dysphagia and bladder dysfunction
frequently experienced by patients with PSP can put them at
risk of respiratory and urinary tract infections. However, the
average CRP level in our PSP group was 4.6 (±1.2), which is

Figure 1 [11C]PK11195 binding in AD, PSP, and HCs

The bar plots represent themean values (± SE) of the [11C]PK11195 BPND in each region of interest for the participant groups: AD andMCI+, PSP, and HCs. The
[11C]PK11195 BPND data reported here are corrected for CSF contamination. See the results section for statistics related to CSF-corrected and uncorrected
data. Post hoc t tests: *p < 0.05, **p < 0.01, ***p < 0.005. AD = Alzheimer disease; BPND = nondisplaceable binding potential; HC = healthy control; MCI+ =
amyloid-positive mild cognitive impairment; PSP = progressive supranuclear palsy.
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well below the values expected in acute inflammatory states.
In addition, the leucocyte count and ESR were both normal.
The increased CRP levels in PSP might therefore reflect
underlying chronic inflammatory states that sustain or even
accelerate the neuroinflammation associated with PSP, in the
absence of acute infection. It will be useful to replicate
these findings in larger clinical cohorts and use more
detailed peripheral markers of inflammation (e.g., immune-
phenotyping) for characterization and classification of the
immune cells in circulation in AD and PSP.

Overall, the use of [11C]PK11195 PET could provide helpful
information to stratify patients in future clinical trials or to
track the effects of treatments targeting neuroinflammation in
neurodegenerative disorders such as AD and PSP. However,
to fully meet its potential toward these directions, additional
properties are necessary to show for this biomarker of neu-
roinflammation. Specifically, although recent longitudinal
studies in AD have demonstrated that changes in [11C]
PK11195 binding may be associated with disease
progression,14,38 such a correlation has not been established in
PSP. Neuroinflammation might be stable in symptomatic
stages of PSP, as suggested by a pilot study of 2 patients with
PSP.10 Furthermore, increased levels of serum neurofilament
light protein have been found in both AD and PSP, and
correlated with disease severity39–41; hence, future studies
may test whether markers of neuroinflammation are associ-
ated with neurofilament light protein levels in the serum.

Perhaps more importantly, it remains to be determined
whether the putative effects of anti-inflammatory therapies
can reduce the elevated [11C]PK11195 binding in AD and
PSP and, consequently, could help slow the progression of
these disorders. This would also enable mediation analysis to
test the causality between immune-reactivity and disease
progression in dementia and related disorders. Furthermore,
we suggest that multitracer PET studies will be useful to
formally assess how neuroinflammation relates to other im-
portant molecular aspects in dementia and related disorders
including, for example, studying how neuroinflammation is
associated with amyloid load in AD14 as well as with tau
burden in AD and PSP. A cross-sectional and single-tracer
study like the present one is not able to address such in-
teresting and open questions, although it represents the
necessary first step toward achieving this goal.

Technical considerations regarding the [11C]PK11195 BPND
PET methods should also be considered. In particular, our
main regional PET analyses used partial volume correction for
CSF, which controlled for differences in CSF signal contam-
ination within each region and across the different diagnostic
groups (i.e., AD/MCI+, PSP, and control groups). Although
this approach is important to reduce the potential influence
of brain volume loss seen in AD/MCI+ and PSP, this
MRI-guided method is subject to error because of imperfect
registration of PET and MRIs, together with errors in seg-
mentation and point spread function modeling. However, we

Figure 2 [11C]PK11195 binding correlates with clinical severity in AD and PSP

(A) Correlation between [11C]PK11195 BPND values in the precuneus (x-axis) and RAVLT scores (y-axis) in patients with AD and MCI+ (red dots). (B–D)
Correlation between [11C]PK11195BPND values in the pallidum,midbrain, and pons (x-axes) and PSP Rating Scale (y-axes) in patients with PSP. AD =Alzheimer
disease; BPND = nondisplaceable binding potential; MCI+ = amyloid-positive mild cognitive impairment; PSP = progressive supranuclear palsy; RAVLT = Rey
Auditory Verbal Learning Test.
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note that using uncorrected PET data yielded similar results in
terms of the main effect of ROI, main effect of group, and
group × ROI interaction, which provides substantiation of the
CSF-corrected results. The supervised cluster method for
estimating [11C]PK11195 BPND could also have introduced
an underestimation bias, as the reference tissue may have still
included specific binding of the radioligand. In any case, this
may have only reduced the effect sizes without altering the risk
of reporting false-positive results.

We also highlight that our data are specific to [11C]PK11195 and
do not inevitably generalize to second-generation translocator
protein (TSPO) ligands (e.g., PBR28) or alternative tracers of
neuroinflammation over and above those that bind to TSPO (e.
g., COX-1, MPO, macrophage infiltration).42–44 Further studies
should assess the utility of such novelmarkers for in vivo imaging
of neuroinflammation, bearing in mind that the binding of
second-generation TSPO tracers like PBR28 can be affected by
genetic variations (i.e., the rs6971 TSPO polymorphism).45

In conclusion, we have provided clear evidence that [11C]
PK11195 is a sensitive PET ligand for in vivo studies of
neuroinflammation in clinical populations with AD and its
prodromal stage of amnestic MCI, as well as in a non-AD
tauopathy, PSP–Richardson syndrome. The brain regions
that showed increased [11C]PK11195 binding were those
predicted from the well-established pattern of regional corti-
cal and subcortical neurodegeneration in each disease. Our
data support the further use of [11C]PK11195 PET to study
microglia activation in neurodegenerative disorders and in
clinical trials that aim to modulate neuroinflammation in
neurodegenerative disease.
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