14 research outputs found

    Machine Learning Applied to Airspeed Prediction During Climb

    Get PDF
    International audienceIn this paper, we apply Machine Learning methods to improve the aircraft climb prediction in the context of groundbased applications. Mass and speed intent are key parameters for climb prediction. As they are considered as competitive parameters by many airlines, they are currently not available to groundbased trajectory predictors. Consequently, most predictors today use reference parameters that may be quite different from the actual ones. In our most recent paper ([1]), we have demonstrated that Machine Learning techniques provide a mass estimation significantly more precise than two state-of-the-art mass estimation methods. In this paper, we apply similar techniques to the speed intent. We first build a set of examples by adjusting CAS/Mach speed profile to each climb trajectory in our database. Then, using the adjusted values (ccas; cM) in this database, we learn a model able to predict the (cas;M) values of a new trajectory, using its past points as input. We apply this technique to actual Mode-C radar data and we consider 9 different aircraft types. When compared with the reference speed profiles provided by BADA, the reduction of the speed RMSE ranges from 36 % to 79 %, depending on the aircraft type. Using the predicted mass and speed profile, BADA is used to compute the predicted future trajectory with a 10 minute horizon. When compared with BADA used with the reference parameters, the reduction of the future altitude RMSE ranges from 45 % to 87 %

    Predicting Aircraft Descent Length with Machine Learning

    Get PDF
    International audiencePredicting aircraft trajectories is a key element in the detection and resolution of air traffic conflicts. In this paper, we focus on the ground-based prediction of final descents toward the destination airport. Several Machine Learning methods – ridge regression, neural networks, and gradient-boosting machine – are applied to the prediction of descents toward Toulouse airport (France), and compared with a baseline method relying on the Eurocontrol Base of Aircraft Data (BADA). Using a dataset of 15,802 Mode-S radar trajectories of 11 different aircraft types, we build models which predict the total descent length from the cruise altitude to a given final altitude. Our results show that the Machine Learning methods improve the root mean square error on the predicted descent length of at least 20 % for the ridge regression, and up to 24 % for the gradient-boosting machine, when compared with the baseline BADA method

    Apprentissage artificiel appliqué à la prévision de trajectoire d'avion

    Get PDF
    The Eurocontrol organization forecasts a strong increase of the European air traffic till the year 2035. This growth justifies the development of new concepts and tools in order to ensure services to airspace users. Trajectory prediction is at the core of these developments. Among these tools, conflict detection and resolution tools use trajectory predictions to anticipate losses of separation between aircraft and propose solutions to air traffic controllers. For such applications, the time horizon of the prediction is about ten to twenty minutes. Among conflict detection and resolution algorithms, some are operated in ground-based systems. The trajectory predictions must then be computed using only the information that is available to ground systems. In these systems, the mass, the speed profile and the thrust setting are unknown. Thus, using a physical model, the trajectory predictions are computed using reference values for unknown parameters. In this context, we are focusing on the climb phase. In this phase these unknown parameters have a great influence on the aircraft trajectory. This work relies on a physical model of the aircraft performances : BADA, developed and maintained by Eurocontrol. It also provides reference values for unknown parameters such as the mass, the speed profile and the thrust setting. This widely used model is particularly inaccurate for the climb phase as the actual values for the unknown parameters might be very different from the reference values. In this thesis, we propose to estimate directly the mass, an unknown parameter, using a physical model and past points of the trajectory. We also use supervised learning methods in order to learn, from examples, some models predicting the unknown parameters (mass, speed profile and thrust setting). These different approaches are tested using Mode-C Radar data and Mode-S Radar data with different aircraft types. The obtained predictions are compared with the ones obtained with the BADA reference values. These predictions are also compared with predictions obtained by directly predicting the future altitude instead of the unknown parameters of the physical model. These methods, depending on the aircraft type, reduces the root mean square error on the predicted altitude at a 10 min horizon by 50 % to 85 % when compared to the root mean square error obtained using BADA with the reference values.L’organisme Eurocontrol prévoit une forte hausse du trafic aérien européen d’ici l’année 2035. Cette hausse de trafic justifie le développement de nouveaux concepts et outils pour pouvoir assurer les services dû aux usagers de l’espace aérien. La prévision de trajectoires d’avion est au cœur de ces évolutions. Parmi ces outils, les outils de détection et résolution de conflits utilisent les trajectoires prédites pour anticiper les pertes de séparation entre avions et proposer des solutions aux contrôleurs aériens. L’horizon de prédiction utilisé pour cette application est de l’ordre de dix à vingt minutes. Parmi les algorithmes réalisant une détection et résolution de conflits, certains sont mis en œuvre au sol, obligeant ainsi les prédictions à être calculées en n’utilisant que les informations disponibles dans les systèmes sols. Dans ces systèmes, la masse des avions ainsi que les profils de vitesse ou de poussée des moteurs ne sont pas connus. Ainsi, le calcul d’une trajectoire prédite avec un modèle physique se fait en utilisant des valeurs de référence pour les paramètres inconnus. Dans ce cadre, on s’intéresse à la phase de montée pour laquelle ces paramètres influent grandement sur la trajectoire de l’avion. Ce travail s’appuie sur le modèle physique Base of Aircraft DAta (BADA) développé et maintenu par Eurocontrol. Ce modèle physique modélise, entre autres, les performances des avions. Il fournit également des valeurs de référence pour les paramètres inconnus comme la masse de l’avion, son profil de vitesse en montée, ou la commande de poussée des moteurs. Ce modèle, largement utilisé dans le monde entier, est particulièrement imprécis pour la phase de montée, car les valeurs réelles de ces paramètres sont parfois très éloignées des valeurs de référence. Dans cette thèse, nous proposons soit d’estimer directement certains paramètres, nommément la masse, à partir des points passés de la trajectoire, soit d’utiliser des méthodes d’apprentissage supervisé afin d’apprendre, à partir d’exemples, des modèles prédisant les valeurs des paramètres manquants (masse, loi de poussée, vitesses cibles). Ces différentes méthodes sont testées sur des données radar Mode-C et Mode-S sur différents types d’avions. Les prédictions obtenues avec ces méthodes sont comparées à celles obtenues avec les paramètres de référence. Elles sont également comparées avec les prédictions obtenues par des méthodes de régression prédisant directement l’altitude de l’avion plutôt que les paramètres du modèle physique. Nos méthodes permettent de réduire, suivant le type de l’avion, de 50 % à 85 % par rapport à la méthode BADA de référence, la racine de l’erreur quadratique moyenne sur l’altitude prédite à un horizon de 10 min

    Energy rate prediction using an equivalent thrust setting profile

    Get PDF
    International audienceGround-based aircraft trajectory prediction is a major concern in air traffic management. A safe and efficient prediction is a prerequisite for the implementation of automated tools that detect and solve conflicts between trajectories. This paper focuses on the climb phase because predictions are less accurate in this phase. The Eurocontrol BADA1 model, as a total energy model, relies on the prediction of energy rate. In a kinetic model, this energy rate comes from the power provided by the forces applied to the aircraft. Computing these forces requires knowledge of the aircraft state (mass, airspeed, etc), atmospheric conditions (wind, temperature) and aircraft intent (maximum climb thrust or reduced climb thrust, for example). Some of this information like the mass and thrust setting are not available to ground-based systems. In this paper, we try to infer an equivalent weight and an equivalent thrust profile. These parameters are not meant to be true, however they are designed to improve the energy rate prediction. One common thrust setting profile for all the trajectories is built. This thrust profile is designed in such a way that the estimated equivalent weight provides a good energy rate prediction. We have compared the energy rate prediction using these equivalent parameters and BADA standard parameters

    High Confidence Intervals Applied to Aircraft Altitude Prediction

    Get PDF
    International audienceThis paper describes the application of high confidence interval prediction methods to the aircraft trajectory prediction problem, more specifically to the altitude prediction during climb. We are interested in methods for finding twosided intervals that contain, with a specified confidence, at least a desired proportion of the conditional distribution of the response variable. This paper introduces Two-sided Bonferroni-Quantile Confidence Intervals (TBQCI), which is a new method for obtaining high confidence two-sided intervals in quantile regression. The paper also uses the Bonferroni inequality to propose a new method for obtaining tolerance intervals in least-squares regression. This latter has the advantages of being reliable, fast and easy to calculate. We compare physical point-mass models to the introduced models on an Air Traffic Management (ATM) dataset composed of traffic at major French airports. Experimental results show that the proposed interval prediction models perform significantly better than the conventional pointmass model currently used in most trajectory predictors. When comparing with a recent state-of-the-art point-mass model with adaptive mass estimation, the proposed methods giv

    Predicting Aircraft Descent Length with Machine Learning

    Get PDF
    Predicting aircraft trajectories is a key element in the detection and resolution of air traffic conflicts. In this paper, we focus on the ground-based prediction of final descents toward the destination airport. Several Machine Learning methods – ridge regression, neural networks, and gradient-boosting machine – are applied to the prediction of descents toward Toulouse airport (France), and compared with a baseline method relying on the Eurocontrol Base of Aircraft Data (BADA). Using a dataset of 15,802 Mode-S radar trajectories of 11 different aircraft types, we build models which predict the total descent length from the cruise altitude to a given final altitude. Our results show that the Machine Learning methods improve the root mean square error on the predicted descent length of at least 20 % for the ridge regression, and up to 24 % for the gradient-boosting machine, when compared with the baseline BADA method

    Wind parameters extraction from aircraft trajectories

    Get PDF
    When supervising aircraft, air traffic controllers need to know the current wind magnitude and direction since they impact every flying vessel. The wind may accelerate or slow down an aircraft, depending on its relative direction to the wind. Considering several aircraft flying in the same geographical area, one can observe how the ground speed depends on the direction followed by the aircraft. If a sufficient amount of trajectory data is available, approximately sinusoidal shapes emerge when plotting the ground speeds. These patterns characterize the wind in the observed area. After visualizing this phenomenon on recorded radar data, we propose an analytical method based on a least squares approximation to retrieve the wind direction and magnitude from the trajectories of several aircraft flying in different directions. After some preliminary tests for which the use of the algorithm is discussed, we propose an interactive procedure to extract the wind from trajectory data. In this procedure, a human operator selects appropriate subsets of radar data, performs automatic and/or manual curve fitting to extract the wind, and validates the resulting wind estimates. The operators can also assess the wind stability in time, and validate or invalidate their previous choices concerning the time interval used to filter the input data. The wind resulting from the least squares approximation is compared with two other sources – the wind data provided by Météo-France and the wind computed from on-board aircraft parameters – showing the good performance of our algorithm. The interactive procedure received positive feedback from air traffic controllers, which is reported in this paper

    Predictive Distribution of the Mass and Speed Profile to Improve Aircraft Climb Prediction

    No full text
    International audienceGround-based aircraft trajectory prediction is a major concern in air traffic control and management. A safe and efficient prediction is a prerequisite to the implementation of new automated tools. In current operations, trajectory prediction is computed using a physical model. It models the forces acting on the aircraft to predict the successive points of the future trajectory. Using such a model requires knowledge of the aircraft state (mass) and aircraft intent (thrust law, speed intent). Most of this information is not available to ground-based systems. Focusing on the climb phase, we train neural networks to predict some of the unknown point-mass model parameters. These unknown parameters are the mass and the speed intent. For each unknown parameter, our model predicts a Gaussian distribution. This predicted distribution is a predictive distribution: it is the distribution of possible unknown parameter values conditional to the observed past trajectory of the considered aircraft. Using this distribution, one can extract a predicted value and the uncertainty related to this specific prediction. Using a physical model like BADA, this distribution could be used to derive a probability distribution of possible future trajectory ([1]). This study relies on ADS-B data coming from The OpenSky Network. It contains the climbing segments of the year 2017 detected by this sensor network. The 11 most frequent aircraft types are studied. The obtained data set contains millions of climbing segments from all over the world. Using this data, we show that despite having an RMSE slightly larger than previously tested methods, the predicted uncertainty allows us to reduce the size of prediction intervals while keeping the same coverage probability. Furthermore, we show that the trajectories with a similar predicted uncertainty have an observed RMSE close to the predicted one. The data set and the machine learning code are publicly available

    Machine Learning Applied to Aircraft Trajectory Prediction

    No full text
    L'organisme Eurocontrol prévoit une forte hausse du trafic aérien européen d'ici l'année 2035. Cette hausse de trafic justifie le développement de nouveaux concepts et outils pour pouvoir assurer les services dus aux usagers de l'espace aérien. La prévision de trajectoires d'avion est au coeur de ces évolutions. Parmi ces outils, les outils de détection et résolution de conflits utilisent les trajectoires prédites pour anticiper les pertes de séparation entre avions et proposer des solutions aux contrôleurs aériens. L'horizon de prédiction utilisé pour cette application est de l'ordre de dix à vingt minutes. Parmi les algorithmes réalisant une détection et résolution de conflits, certains sont mis en œuvre au sol, obligeant ainsi les prédictions à être calculées en n'utilisant que les informations disponibles dans les systèmes sols. Dans ces systèmes, la masse des avions ainsi que les profils de vitesse ou de poussée des moteurs ne sont pas connus. Ainsi, le calcul d'une trajectoire prédite avec un modèle physique se fait en utilisant des valeurs de référence pour les paramètres inconnus. Dans ce cadre, nous nous intéressons à la phase de montée pour laquelle ces paramètres influent grandement sur la trajectoire de l'avion. Ce travail s'appuie sur le modèle physique BADA développé et maintenu par Eurocontrol. Ce modèle physique modélise, entre autres, les performances des avions. Il fournit également des valeurs de référence pour les paramètres inconnus comme la masse de l'avion, son profil de vitesse en montée, ou la commande de poussée des moteurs. Ce modèle, largement utilisé dans le monde entier, est particulièrement imprécis pour la phase de montée, car les valeurs réelles de ces paramètres sont parfois très éloignées des valeurs de référence. Dans cette thèse, nous proposons soit d'estimer directement certains paramètres, comme la masse, à partir des points passés de la trajectoire, soit d'utiliser des méthodes d'apprentissage supervisé afin d'apprendre, à partir d'exemples, des modèles prédisant les valeurs des paramètres manquants (masse, loi de poussée, vitesses cibles). Ces différentes méthodes sont testées sur des données radar Mode-C et Mode-S sur plusieurs types d'avions. Les prédictions obtenues avec ces méthodes sont comparées à celles obtenues avec les paramètres de référence. Elles sont également comparées avec les prédictions obtenues par des méthodes de régression prédisant directement l'altitude de l'avion plutôt que les paramètres du modèle physique. Nos méthodes permettent de réduire, suivant le type de l'avion, de 50 % à 85 % par rapport à la méthode BADA de référence, la racine de l'erreur quadratique moyenne sur l'altitude prédite à un horizon de dix minutes.The Eurocontrol organization forecasts a strong increase of the European air traffic till the year 2035. This growth justifies the development of new concepts and tools in order to ensure services to airspace users. Trajectory prediction is at the core of these developments. Among these tools, conflict detection and resolution tools use trajectory predictions to anticipate losses of separation between aircraft and propose solutions to air traffic controllers. For such applications, the time horizon of the prediction is about ten to twenty minutes. Among conflict detection and resolution algorithms, some are operated in ground-based systems. The trajectory predictions must then be computed using only the information that is available to ground systems. In these systems, the mass, the speed profile and the thrust setting are unknown. Thus, using a physical model, the trajectory predictions are computed using reference values for unknown parameters. In this context, we are focusing on the climb phase. In this phase these unknown parameters have a great influence on the aircraft trajectory. This work relies on a physical model of the aircraft performances : BADA, developed and maintained by Eurocontrol. It also provides reference values for unknown parameters such as the mass, the speed profile and the thrust setting. This widely used model is particularly inaccurate for the climb phase as the actual values for the unknown parameters might be very different from the reference values. In this thesis, we propose to estimate directly the mass, an unknown parameter, using a physical model and past points of the trajectory. We also use supervised learning methods in order to learn, from examples, some models predicting the unknown parameters (mass, speed profile and thrust setting). These different approaches are tested using Mode-C Radar data and Mode-S Radar data with different aircraft types. The obtained predictions are compared with the ones obtained with the BADA reference values. These predictions are also compared with predictions obtained by directly predicting the future altitude instead of the unknown parameters of the physical model. These methods, depending on the aircraft type, reduces the root mean square error on the predicted altitude at a 10 min horizon by 50 % to 85 % when compared to the root mean square error obtained using BADA with the reference values
    corecore