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Abstract—Predicting aircraft trajectories is a key element in
the detection and resolution of air traffic conflicts. In this paper,
we focus on the ground-based prediction of final descents toward
the destination airport. Several Machine Learning methods –
ridge regression, neural networks, and gradient-boosting ma-
chine – are applied to the prediction of descents toward Toulouse
airport (France), and compared with a baseline method relying
on the Eurocontrol Base of Aircraft Data (BADA).

Using a dataset of 15,802 Mode-S radar trajectories of 11
different aircraft types, we build models which predict the total
descent length from the cruise altitude to a given final altitude.

Our results show that the Machine Learning methods improve
the root mean square error on the predicted descent length of
at least 20 % for the ridge regression, and up to 24 % for
the gradient-boosting machine, when compared with the baseline
BADA method.

Keywords: aircraft trajectory prediction, descent, BADA,

Machine Learning

INTRODUCTION

An accurate trajectory prediction (TP) is a prerequisite to

any operational implementation of conflict detection and reso-

lution (CDR) algorithms. Most current trajectory predictors

use a point-mass model of the aircraft that requires input

parameters such as the aircraft mass, thrust and speed intent.

Unfortunately, these data are often uncertain or even unknown

to ground-based predictors which use default values instead,

leading to poor predictions. As shown in [1], the performance

of CDR algorithms is highly impacted by uncertainties in the

trajectory prediction.

One could think that downloading the on-board FMS pre-

diction would solve this issue. This is not true however,

as ground-based applications may need to search among a

large number of alternative trajectories to find an optimal

solution to a given problem. For example, in [2] an iterative

quasi-Newton method is used to find trajectories for departing

aircraft, minimizing the noise nuisance. Another example is [3]

where Monte Carlo simulations are used to estimate the risk

of conflict between trajectories in a stochastic environment.

Some of the automated tools currently being developed for

ATM/ATC can detect and solve conflicts between trajectories

(see [4] for a review). These algorithms may use Mixed

Integer Programming ([5]), Genetic Algorithms ([6], [7]), Ant

Colonies ([8]), or Differential Evolution or Particle Swarm

Optimization ([9]) to find optimal solutions to air traffic

conflicts. The on-board computers and the datalink capabilities

are currently not fit to the purpose of transmitting a large

number of alternative trajectories, as would be required by

such applications.

Another obvious solution would be to downlink the point-

mass model parameters to ground-based systems. However,

some of these parameters (mass, speed intent) are considered

as competitive by some airline operators which are reluctant to

transmit them. One can hope that these on-board parameters

will be made available in the future. In the meantime, air nav-

igation service providers are left with work-around solutions

to improve their ground-based trajectory predictors.

In previous works [10], [11], we used a Machine Learning

approach to improve the altitude prediction of climbing air-

craft. The proposed approach consisted in learning models that

could estimate the missing parameters, or directly predict the

future altitude. We now propose to apply Machine Learning

techniques to the prediction of descents towards the destination

airport.

In the current paper, we address the descent prediction

problem with neural networks (NNet), gradient-boosted ma-

chines (GBM), and ridge regression (Ridge) methods and

compare the results with a baseline method relying on the

Eurocontrol BADA model. These methods are compared using

a 10-fold cross-validation on a dataset of 15,802 Mode-S radar

trajectories comprising 11 aircraft types.

The sequel of this paper is organized as follows: Section I

describes the background and problem statement. Section II

presents some useful Machine Learning notions that help

understanding the methodology applied in our work. The

methods applied to our descent length prediction problem are

described in section III. Section IV details the data used in this

study, and the results are shown and discussed in section V,

before the conclusion.

I. BACKGROUND AND PROBLEM STATEMENT

Predicting the aircraft final descent toward the airport is a

crucial problem that has been already studied, for example

in the context of the evaluation of a descent advisory tool

[12], [13], or an operational trajectory predictor [14]. In [14],

the predictions of a Eurocat Trajectory Predictor are com-

pared with the actual trajectories of 51 continuous descents

to Stockhom-Arlanda airport, considering one aircraft type

(B737) operated by a single company. The influence of various

additional data on the prediction accuracy is studied. The study

concluded that FMS 4D-trajectory was the main source of

improvement, followed by the aircraft mass. Surprisingly, the
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weather data and speed intent were found to have small impact,

questioning how the TP logic takes these data into account.

In [15], Stell applies a linear regression method to a dataset

of about 70 idle-thrust descent trajectories per aircraft type

considered in the study (A319/320, B757). All the flights were

descending toward Denver International Airport and belonged

to a same airline. For each flight, the descent speed intent

and aircraft mass are known and used in the study. These

works conclude that a linear combination of the explanatory

variables (cruise and meter fix altitudes, descent CAS, wind,

and possibly weight, for the Airbus) could successfully predict

the top-of-descent. However, the experimental setup required

to collect the data from many different sources over a short

period (3 weeks). A relatively small amount of data was

collected, that might not cover the actual range of all parameter

values.

In [16], the same operational data is used, and also some

laboratory data obtained from FMS test benches for two

aircraft types (B737-700 and B777-200). The author makes

polynomial and linear approximations of the distance from

TOD to meter fix computed by the EDA (Efficient Descent

Advisor) tool, for these two aircraft types. The conclusion

is that a polynomial or even a linear model can efficiently

approximate this along-track distance using the cruise altitude,

descent CAS, aircraft weight, wind, and the altitude and

velocity at the meter fix as explanatory variables.

In [17], Stell et al. use a larger dataset with 1088 flights of

a single aircraft type (B737-800), with two different motoriza-

tions. The aircraft masses were not collected. The Intermediate

Projected Intent (IPI) is extracted from ADS-C data and

used to determine the actual top-of-descent, as well as the

initial cruise and final altitudes, and the descent CAS. Several

canditate linear or polynomial models predicting the TOD

from various subsets of variables are fitted on the data. The

subsets of variables comprise the cruise and final altitudes, the

cruise mach number, descent CAS, and forecast wind. After

a thorough analysis, the paper concludes that simple linear

models using the cruise and final altitudes and CAS intent

could be the basis of further work in order to use them in

decision support tools.

In the current paper, we investigate how Machine Learning

techniques could improve the prediction of the final descent

toward the destination airport. A dataset of trajectory examples

is used to tune different models (linear models, neural net-

works, gradient boosting machines) predicting the total length

of descent between the cruise altitude and a final altitude

which is either FL150 or the altitude at which the descent

is interrupted by a intermediate leveled flight segment. Our

dataset comprises 15,802 trajectories of 11 different aircraft

types (A319, A320, A321, A3ST, B733, B738, CRJ1, CRJ7,

CRJ9, CRJX and E190). The trajectories were recorded from

the Toulouse Mode-S radar data, in the south of France. The

aircraft masses are not available as we use only Mode-S data.

The wind data is extracted from the ground speed and true

airspeed downlinked from the aircraft. The actual descent

speed could have been extracted from each Mode-S example

trajectory by adjusting it on the observed data. This was not

done in this study however. Using the speed intent in our

predictions is left for future work.

The purpose of the current preliminary study is to evaluate

the performances of several Machine Learning techniques on

the total descent length prediction problem, and to compare

them with a baseline method relying on the 3.13 release of

the Eurocontrol Base of Aircraft Data (BADA) [18].

II. MACHINE LEARNING

This section describes some useful Machine Learning no-

tions and techniques. For a more detailed and comprehensive

description of these techniques, one can refer to [19], [20].

We want to predict a variable y, here the descent length,

from a vector of explanatory variables x, which in our case

is the data extracted from the past trajectory points and the

weather data. This is typically a regression problem. Naively

said, we want to learn a function h such that y = h(x) for

all (x, y) drawn from the distribution (X,Y ). Actually, such a

function does not exist, in general. For instance, if two ordered

pairs (x, y1) and (x, y2) can be drawn with y1 6= y2, h(x)
cannot be equal to y1 and y2 at the same time. In this situation,

it is hard to decide which value to give to h(x).
A way to solve this issue is to use a real-valued loss function

L. This function is defined by the user of function h. The value

L(h(x), y) models a cost for the specific use of h when (x, y)
is drawn. With this definition, the user wants a function h

minimizing the expected loss R (h) defined by equation (1).

The value R (h) is also called the expected risk.

R(h) = E(X,Y ) [L (h(X), Y )] (1)

However, the main issue when choosing a function h minimiz-

ing R (h) is that we do not know the joint distribution (X,Y ).
We only have a set of examples of this distribution.

A. Learning from examples

Let us consider a set of n examples S = (xi, yi)16i6n

coming from independent draws of the same joint distribution

(X,Y ). We can define the empirical risk Rempirical by the

equation below:

Rempirical(h, S) =
1

|S|

∑

(x,y)∈S

L (h(x), y) . (2)

Assuming that the values (L(h(x), y))(x,y)∈S are independent

draws from the same law with a finite mean and variance,

we can apply the law of large numbers giving us that

Rempirical(h, S) converges to R(h) as |S| approaches +∞.

Thereby, the empirical risk is closely related to the expected

risk. So, if we have to select h among a set of functions

H minimizing R(h), using a set of examples S, we select

h minimizing Rempirical(h, S). This principle is called the

principle of empirical risk minimization.

Unfortunately, choosing h minimizing Rempirical(h, S) will

not always give us h minimizing R(h). Actually, it depends on

the “size”1 of H and the number of examples |S| ([21], [22]).

1The “size” of H refers here to the complexity of the candidate models
contained in H , and hence to their capability to adjust to complex data. As
an example, if H is a set of polynomial functions, we can define the “size”
of H as the highest degree of the functions contained in H . In classification
problems, the “size” of H can be formalized as the Vapnik-Chervonenkis
dimension.
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The smaller H and the larger |S| are, the more the principle of

empirical risk minimization is relevant. When these conditions

are not satisfied, the selected h will probably have a high R(h)
despite a low Rempirical(h, S). In this case, the function h is

overfitting the examples S.

These general considerations have practical consequences

on the use of Machine Learning. Let us denote hS the function

in H minimizing Rempirical(., S). The expected risk using hS

is given by R(hS). We use the principle of empirical risk

minimization. As stated above, some conditions are required

for this principle to be relevant. Concerning the size of the set

of examples S: the larger, the better. Concerning the size of

H , there is a trade off: the larger H is, the smaller min
h∈H

R(h)

is. However, the larger H is, the larger the gap between R(hS)
and min

h∈H
R(h) becomes. This is often referred to as the bias-

variance trade off.

B. Accuracy Estimation

In this subsection, we want to estimate the accuracy ob-

tained using a Machine Learning algorithm A. Let us denote

A[S] the prediction model found by algorithm A when mini-

mizing Rempirical(., S)
2, considering a set of examples S.

The empirical risk Rempirical(A[S], S) is not a suitable

estimation of R(A[S]): the law of large numbers does not

apply here because the predictor A[S] is neither fixed nor

independent from the set of examples S.

One way to handle this is to split the set of examples S

into two independent subsets: a training set ST and another

set SV that is used to estimate the expected risk of A[ST ], the

model learned on the training set ST . For this purpose, one

can compute the holdout validation error Errval as defined by

the equation below:

Errval(A, ST , SV ) = Rempirical(A[ST ], SV ). (3)

Cross-validation is another popular method that can be used

to estimate the expected risk obtained with a given learning

algorithm. In a k-fold cross-validation method, the set of

examples S is partitioned into k folds (Si)16i6k. Let us denote

S−i = S\Si. In this method, k trainings are performed in order

to obtain the k predictors A[S−i]. The mean of the holdout

validation errors is computed, giving us the cross-validation

estimation below:

CVk(A, S) =
k∑

i=1

|Si|

|S|
Errval(A, S−i, Si). (4)

This method is more computationally expensive than the

holdout method but the cross-validation is more accurate than

the holdout method ([23]). In our experiments, the folds

were stratified. This technique is said to give more accurate

estimates ([24]).

The accuracy estimation has basically two purposes: first,

model selection in which we select the “best” model using

2Actually, depending on the nature of the minimization problem and
chosen algorithm, this predictor A[S] might not be the global optimum for
Rempirical(., S), especially if the underlying optimization problem is handled
by local optimization methods.

accuracy measurements and second, model assessment in

which we estimate the accuracy of the selected model. For

model selection, the set SV in Errval(A, ST , SV ) is called

validation set whereas in model assessment this set is called

testing set.

C. Hyperparameter Tuning

Some learning algorithms have hyperparameters. These hy-

perparameters λ are the parameters of the learning algorithm

Aλ. These parameters cannot be adjusted using the empirical

risk because most of the hyperparameters are directly or

indirectly related to the size of H . Thus, if the empirical risk

was used, the selected hyperparameters would always be the

ones associated to the largest H .

These hyperparameters allow us to control the size of H in

order to deal with the bias-variance trade off. These hyperpa-

rameters can be tuned using a cross-validation method on the

training set for accuracy estimation. This accuracy estimation

is used for model selection. In order to select a value of λ

minimizing this accuracy estimation, we used a grid search

which consists in an exhaustive search in a grid of hyper-

parameter values. In the Algorithm 1, TuneGrid(Aλ, grid)
is a learning algorithm without any hyperparameters. In this

algorithm, a 10-fold cross-validation is used on the training

set to select the hyperparameters λ for the algorithm Aλ.

function TUNEGRID(Aλ,grid)[T ]

λ∗ ← argmin
λ∈grid

CV10(Aλ, T )

return Aλ∗ [T ]
end function

Algorithm 1: Hyperparameters tuning for an algorithm Aλ and

a set of examples T (training set).

III. MACHINE LEARNING METHODS

In this section, we briefly describe the Machine Learning

techniques applied to our descent length prediction problem.

A. Ridge Regression (Ridge)

Linear regression ([25], [26]) is a widely used method.

With this method, the set of functions H contains all the

linear functions. Thus, if we consider that x is a tuple of p

values (x1, ..., xi, ..., xp), the prediction h(x; θ) is expressed

as follows:

h(x; θ) =

p∑

i=1

θixi + θ0 (5)

where θ is a tuple of p+ 1 values. From the training set, the

parameters θ are estimated by minimizing the sum of squared

error. When the loss function is the square function, the

estimated parameter is also the one minimizing the empirical

risk. However, when some variables of x are nearly collinear,

the estimation of θ using the least square method might give

a high expected risk even if the empirical risk was low. To
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alleviate this issue, the Ridge regression [27] estimates the θ

parameters by minimizing the following expression:

∑

(x,y)∈T

(h(x; θ)− y)
2
+ λ

p∑

i=1

θi
2 (6)

where λ is an hyperparameter that must be selected by cross-

validation. This parameter limits the range of the parameters

θ. The larger λ is, the closer to zero the θi are. The hyperpa-

rameter grid used for this algorithm is presented in Table I.

method hyperparameter grid

Ridgeλ λ = 10J−7;1K ∪ 0.5× 10J−7;0K

Table I: Grid of hyperparameters used in our experiments for

Ridge.

B. Regression using Neural Networks (NNet)

Artificial neural networks are algorithms inspired from the

biological neurons and synaptic links. An artificial neural

network is a graph, with vertices (neurons, or units) and edges

(connections) between vertices. There are many types of such

networks, associated to a wide range of applications. Beyond

the similarities with the biological model, an artificial neural

network may be viewed as a statistical processor, making

probabilistic assumptions about data ([28]). The reader can

refer to [29] and [30] for an extensive presentation of neural

networks for pattern recognition. In our experiments, we used

a specific class of neural networks, referred to as feed-forward

networks, or multi-layer perceptrons (MLP). In such networks,

the units (neurons) are arranged in layers, so that all units in

successive layers are fully connected. Multi-layers perceptrons

have one input layer, one or several hidden layers, and an

output layer. In our case, we have only one target value to

predict, so the output layer has only one unit.

For a network with one hidden layer of n units and one

unit on the output layer, the output h(x; θ) is expressed as

a function of the input vector x = (x1, ..., xi, ..., xp)
T as

follows:

h(x; θ) = Ψ(
n∑

j=1

θjΦ(

p∑

i=1

θijxi + θ0j) + θ0) (7)

where the θij and θj are weights assigned to the connections

between the input layer and the hidden layer, and between

the hidden layer and the output layer, respectively, and where

θ0j and θ0 are biases (or threshold values in the activation of

a unit). Φ is an activation function, applied to the weighted

output of the preceding layer (in that case, the input layer), and

Ψ is a function applied, by each output unit, to the weighted

sum of the activations of the hidden layer. This expression can

be generalized to networks with several hidden layers.

The output error – i.e. the difference between the desired

output (target values) and the output h(x; θ) computed by

the network – will depend on the parameters θ (weights and

biases), that must be tuned using a training set T . In order to

minimize the expected risk and avoid overfitting, the weights

and biases are tuned to minimize a regularized empirical risk

defined as follows:

∑

(x,y)∈T

(h(x; θ)− y)
2
+ λ

n∑

j=1

p∑

i=1

θij
2 (8)

where λ is a hyperparameter that must be selected by cross-

validation. The larger λ is, the smoother h(.; θ) is. The method

used to minimize this regularized empirical risk is a BFGS

quasi-Newton method.

In our study, the activation function is the logistic sigmoïd,

and the output function is the identity. The hyperparameter

grid used for this algorithm is presented in Table II.

method hyperparameter grid

NNet(n,λ)
n = {2, 3, 4, 5, 6, 7, 8, 9, 10}
λ = {0.0001, 0.0001, 0.001, 0.01, 0.1, 0.5, 1, 2, 5}

Table II: Grid of hyperparameters used in our experiments for

NNet.

C. Gradient Boosting Machine (GBM)

The stochastic gradient boosting machine algorithm was

introduced in [31]. It applies functional gradient descent ([32]

using regression trees [33].

The functional gradient descent is a boosting technique.

The model h is iteratively improved. At each iteration m

we consider the opposite of the gradient of the loss gm,i =

−∂L(ŷ,yi)
∂ŷ

(hm (xi) , yi). Using a regression tree algorithm

[33], a tree Tm predicting gm is built from the set of examples

is (xi, gm,i)16i6n. Tm is a binary tree representing a binary

recursive partition of the input space. At each node, the input

space is split into two regions according to a condition xj 6 s.

The J leaves describe a partition (Rj)16j6J
of the input

space. Each region Rj is associated to a constant γj and when

x falls into Rj , then γj is returned as the prediction result. The

updated model hm+1 predicting y is expressed as follows:

hm+1(x) = hm(x) + νTm(x) (9)

where ν is a learning rate that has to be tuned in order to

avoid overfitting.

Regression trees have some advantages. The regression tree

algorithm is insensitive to monotonic transformations of the

inputs. Using xj , log(xj) or exp (xj) leads to the same model.

As a consequence, this algorithm is robust to outliers. It

can easily handle categorical variables and missing values.

However it is known to have a poor performance in prediction.

The latter drawback is very limited when used in combina-

tion with functional gradient descent as it is done in the gradi-

ent boosting machine algorithm. In our experiments we used

the gbm package ([34]) in the R software. This algorithm op-

timizes the risk given by a quadratic loss L(ŷ, y) = (ŷ − y)
2
.

Let us note GBM(M,J,ν,n) this algorithm, where M is the

number of boosting iterations, J is the number of leaves of the

tree and ν is the shrinkage parameter. The obtained model is a

sum of regression trees. J allows us to control the interaction

between variables, as we have J −1 variables at most in each

regression tree. n is the minimum number of examples in each

region Rj . The hyperparameter grid used for this algorithm is

presented in Table III.
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method hyperparameter grid

GBM(m,J,ν,n)

M = {2000}
J = {2, 3, 4, 6, 9, 11, 14, 16, 18}
ν = {0.001, 0.0025, 0.005, 0.01}
n = {3, 5, 10, 15}

Table III: Grid of hyperparameters used in our experiments

for GBM.

IV. DATA USED IN THIS STUDY

A. Data Pre-processing

Mode-S data from the french air navigation service provider

are used in this study. This Mode-S radar is located in the

Toulouse area. This raw data is made of one position report

every 4 to 5 seconds, over 242 days (from February 2011 to

December 2012).

The trajectory data is made of the fields sent by the aircraft:

aircraft position (latitude and longitude), altitude Hp (in feet

above isobar 1,013.25 hPa), rate of climb or descent, Mach

number, bank angle, ground speed, true track angle, true

airspeed and heading. The wind is computed from these last

four variables, and the temperature is computed from the Mach

number and the true airspeed. The raw Mode-S altitude has a

precision of 25 feet. Raw data are smoothed using splines.

Along with these quantities derived from the Mode-S radar

data, we have access to some quantities in the flight plan like

the Requested Flight Level for instance.

B. Extracting the First Descent Segment

Only the flights arriving to Toulouse Blagnac (LFBO) are

kept. The time tTOD at which the descent begins has to be

extracted from the radar track. To do so, the time with the

highest altitude is determined. Starting from this time we

search for the first time window of 1 min with a ROCD inferior

to −200 ft/min. To obtain the time at which the descent begins,

we add 10 s at the start of this time window. The descent

segments with a Top Of Descent altitude HpTOD
inferior to

15,500 ft were discarded. The time tEOD at which the descent

ends is the first time with a ROCD superior to −100 ft/min

minus 30 s. If the ROCD is always inferior to this threshold till

15,000 ft, then we consider that the descent ends at 15,000 ft.

Figure 1 illustrates the results of this algorithm for one day of

traffic for the aircraft type A319. This process was applied

to 11 different aircraft types. As summarized by table IV,

we have obtained several hundred descent segments for each

aircraft type. The variable to be predicted is the distance

flown from tTOD to tEOD. This distance Sdesc is computed by

numerically integrating the smoothed ground speed between

tTOD and tEOD.

This process was applied to the trajectories of 11 different

aircraft types. These aircraft types are the most highly repre-

sented in our data set. Table IV summarizes the number of

descent segments obtained.

C. The Explanatory Variables

We want to learn the distance flown during the first descent

segment. The explanatory variables used to predict this target

type number of descent segments

A319 6755
A320 4179
A321 1045
A3ST 335
B733 785
B738 394
CRJ1 424
CRJ7 543
CRJ9 554
CRJX 401
E190 387

Table IV: Size of the different sets of the descent segments.

0

10000

20000

30000

40000

0 1000

t − tTOD [s]

H
p
 [

ft
]

Figure 1: This figure illustrates one day of traffic for the

aircraft type A319. The descent segments extracted are in blue.

variable are grouped in a tuple x. This tuple contains all

the known variables when the aircraft is in cruise phase. We

assume that the altitudes at the begining and the end of the

descent are known. The wind and temperature at these altitudes

can be easily computed from a weather forecast grid, prior to

the descent phase. In our study, we do not have the a weather

forecast. For want of anything better, these weather data are

computed using the Mode-S radar data of the descent segment.

Consequently, the distance errors presented in section V are

probably smaller than what would be obtained with a forecast

wind. However, our objective in this paper is only to compare

the different methods and using the Mode-S wind should not

significantly influence the results.

Knowing the departure and arrival airports, the distance and

the track angle between these two airports are computed. In

the hope of taking into account the impact of the wind on

the distance flown, the wind at HpTOD
is projected on the line

segment between the two airports.

The variable dBADA is the distance predicted by BADA with

no wind and an ISA atmosphere. The variable dBADAw
is the

distance with the wind and the temperature computed from
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the Mode-S radar data. For these two predictions, we assume

that the lateral intent is known. Thus, in our study, we use the

track angle and the bank angle computed from the Mode-S

data. These two predicted distances are in the tuple x. The

two predictions are added because we can consider that the

difference between these two distances gives a good insight

of the impact of the weather on the distance.

The QFU of the runway used by the aircraft is also in the

tuple x. For each trajectory, this QFU is extracted from the

radar data by taking the track angle at the point with the lowest

altitude. If this heading is between 120 and 160, then the QFU

is 140; if it is between 300 and 340 then the QFU is 320

otherwise the trajectory is discarded from our set of examples.

Table V summarizes the explanatory variables used in this

study.

quantities description

HpTOD geopotential pressure altitude at tTOD

∆T TOD temperature differential at HpTOD
WTOD wind speed at HpTOD

WdirTOD wind direction at HpTOD
MachTOD Mach number at HpTOD
HpEOD geopotential pressure altitude at tEOD

∆T EOD temperature differential at HpEOD
WEOD wind speed at HpEOD

WdirEOD wind direction at HpEOD
distance distance between airports

angle course between airports
windeffect wind along the track between air-

ports
RFL Requested Flight Level

Speed requested speed
QFU QFU of the runway used

dBADA distance predicted by BADA with no
wind and ISA atmosphere

dBADAw
distance predicted by BADA with the
actual weather

hour hour at which the aircraft lands
month month at which the aircraft lands

Table V: Explanatory variables available in our study.

V. RESULTS AND DISCUSSION

All the statistics presented in this section are computed

using a stratified 10-fold cross-validation embedding the hy-

perparameter selection. Our set of examples S is partitioned

in 10 folds (Si)16i610. On each fold S−i, the algorithm

TuneGrid(Aλ, grid) (see algorithm 1) is applied. This algo-

rithm also embeds a 10-fold cross-validation to select the best

hyperparameters λ∗ used to learn from S−i. Thus, two nested

cross-validation are used. The outer cross-validation, applied

on S, is used to assess the prediction accuracy and the inner

cross-validation, applied on each S−i, is used to select the

model i.e. the hyperparameters λ. Figure 2 illustrates how the

two nested cross-validation are used.

Overall, our set of predicted distances is the concatenation

of the ten TuneGrid(Aλ, grid)[S−i] (Si). Therefore, all the

statistics presented in this section are computed on test sets Si.

A. Prediction of the Distance

The results obtained with the Machine Learning algorithms

are reported in Table VI. In this table we compare the pre-

dicted distance to the observed distance Sdesc. We have tested

different methods: a ridge regression (Ridge), a neural net-

work (NNet) and a gradient boosting machine (GBM). These

Figure 2: Cross-validation for model assessment, with an

embedded cross-validation for hyperparameter tuning.

methods are compared with the distance dBADAw
predicted

by BADA. To compute this BADA prediction, the reference

parameters are used concerning the mass, the descent speed

profile and the aerodynamic configuration. The lateral intent

and the weather are assumed to be known. Thus, we used the

track angle, bank angle, wind and temperature computed from

the Mode-S data. This is the baseline method.

type method mean stdev mean abs RMSE max abs

A319 BADAw -21.94 14.64 22.22 26.38 72.69
A319 Ridge -0.02671 11.69 9.187 11.68 52.13
A319 NNet -0.09695 11.08 8.637 11.08 52.98
A319 GBM -0.008857 10.61 8.155 10.61 50.56

A320 BADAw -21.72 13.9 22.02 25.78 73.99
A320 Ridge -0.013 11.85 9.274 11.85 58.94
A320 NNet -0.01998 11.31 8.806 11.31 58.27
A320 GBM 0.03112 10.96 8.483 10.96 54.14

A321 BADAw -23.02 13.51 23.16 26.69 64.98
A321 Ridge 0.06184 11.08 8.887 11.08 40.56
A321 NNet 0.05376 11.07 8.765 11.07 44.26
A321 GBM 0.04682 10.77 8.512 10.76 46.27

A3ST BADAw -29.69 12.53 29.69 32.22 66.88
A3ST Ridge 0.05257 5.627 3.908 5.619 36.08
A3ST NNet -0.04004 6.255 4.405 6.246 41.52
A3ST GBM 0.04052 5.962 4.085 5.953 47.1

B733 BADAw -13.63 15.28 15.25 20.47 68.93
B733 Ridge -0.02586 13.09 10.14 13.08 42.88
B733 NNet -0.06675 11.45 8.735 11.44 43.9
B733 GBM 0.003289 10.71 8.051 10.7 45.72

B738 BADAw -14.95 12.33 15.56 19.37 69.6
B738 Ridge -0.09214 11.54 8.611 11.53 50.88
B738 NNet -0.1508 11.12 8.301 11.11 47.98
B738 GBM 0.02121 10.92 8.126 10.91 51.9

CRJ1 BADAw -10.64 10.83 11.3 15.17 55.94
CRJ1 Ridge -0.09386 9.281 7.004 9.271 44.52
CRJ1 NNet -0.2007 9.595 7.122 9.585 45.37
CRJ1 GBM 0.126 7.909 5.717 7.9 38.73

CRJ7 BADAw -17.72 16.16 19.65 23.97 70.56
CRJ7 Ridge -0.1364 12.14 9.409 12.13 48.83
CRJ7 NNet 0.02049 12.15 9.414 12.14 47.14
CRJ7 GBM 0.01026 10.93 8.412 10.92 43.31

CRJ9 BADAw -23.11 13.78 23.23 26.9 63.2
CRJ9 Ridge 0.1807 10.85 8.535 10.85 39.26
CRJ9 NNet 0.2529 11.22 8.683 11.21 41.13
CRJ9 GBM 0.09151 10.65 8.296 10.64 36.35

CRJX BADAw -5.645 11.13 8.842 12.47 63.3
CRJX Ridge 0.08714 10.02 7.687 10 43.32
CRJX NNet 0.1207 10 7.553 9.99 41.33
CRJX GBM 0.0723 9.481 6.982 9.469 40.82

E190 BADAw -23.91 13.69 23.92 27.55 66.11
E190 Ridge 0.07624 9.449 7.577 9.437 28.96
E190 NNet -0.06213 9.484 7.456 9.472 27.32
E190 GBM 0.1381 8.82 6.867 8.81 30.53

Table VI: These statistics, in nautical miles, are computed on

the predicted distance minus the observed distance.
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The Machine Learning methods are compared with the

baseline BADAw. Among the Machine Learning methods, the

Ridge method is the less accurate one. Over the 11 aircraft

types, we observe a reduction of the RMSE of 50 %, ranging

from 20 % to 83 % when using the ridge regression. Using

NNet, the benefit is even higher with an average reduction of

51 %. The best results are obtained with GBM with an average

reduction of 55 %. For each aircraft types, a Wilcoxon signed-

rank test3 was performed. Using a directional test, the null

hypothesis is that most of the time the squared error obtained

using Ridge is inferior to the one obtained using GBM. The

null hypothesis is rejected when p-value ≤ 0.01. In our results,

the null hypothesis was not rejected only for the A3ST, B738

and CRJ9. Concerning the other aircraft types, this suggests

that GBM is more accurate than Ridge.

In terms of percentage, the Machine Learning methods

give almost the same reduction. This is because the BADA

model, i.e. the baseline, performs poorly with the reference

parameters. However, in terms of nautical miles, the use of

GBM over Ridge reduces further the RMSE by almost 1 NM.

Concerning the A3ST, the RMSE obtained with the Machine

Learning method is particularly low. This aircraft type is

used by Airbus to carry aircraft parts. In our data, the A3ST

follows always the same CAS/Mach speed profile during the

descent. Also, the A3ST follows constant ROCD segments

during the descent. Figure 3 illustrates these assertions. As a

consequence, at a given altitude the ratio between the speed

and the ROCD is similar for all the A3ST flights. Now, the

integral of this ratio between HpEOD
and HpTOD

is the distance

flown in the air. Thus, for a given HpTOD
and HpEOD

, all the

A3ST have barely the same Sdesc.

Concerning the other aircraft types, as depicted by Figure 4

for the B738, they follow several different CAS/Mach speed

profiles and many aircraft do not follow a constant ROCD

profile. As a result, Sdesc is more difficult to predict for these

aircraft types.

CONCLUSION

To conclude, let us summarize our approach and findings,

before giving a few perspectives on future works. In this article

we have described a way to predict the descent length above

FL150. Using Machine Learning and a set of examples, we

have built models predicting this descent length. Using real

Mode-S radar, this approach has been tested on 11 different

aircraft types. In order to evaluate the accuracy of the Machine

Learning methods, a cross-validation was used.

When compared with the reference descent length predic-

tion provided by BADA, the RMSE on the descent length is

reduced, on average, by 55 % using GBM, a Machine Learning

method.

In future works, we plan to predict where the descent begins

along the planned route. For CDR applications, we also have

to predict the positions of the aircraft during the descent.

This might be done by using Machine Learning in order to

predict the missing BADA parameters such as the mass and

the speed/ROCD/thrust setting intent.

3We have used the wilcox.test provided by the R environnment, with
the paired option.
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Figure 3: This figure displays the CAS and the ROCD as a

function of Hp for the A3ST.
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