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Machine Learning and Mass Estimation Methods
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R. Alligier, D. Gianazza, N. Durand
ENAC, MAIAA, F-31055 Toulouse, France

Univ. de Toulouse, IRIT/APO, F-31400 Toulouse, France

Abstract—In this paper, we apply Machine Learning methods
to improve the aircraft climb prediction in the context of ground-
based applications. Mass is a key parameter for climb prediction.
As it is considered a competitive parameter by many airlines, it
is currently not available to ground-based trajectory predictors.
Consequently, most predictors today use a reference mass that
may be different from the actual aircraft mass. In previous
papers, we have introduced a least square method to estimate
the mass from past trajectory points, using the physical model
of the aircraft. Another mass estimation method, based on an
adaptive mechanism, has also been proposed by Schultz et. al.

We now introduce a new approach, where the mass is
considered as the response variable of a prediction model that
is learned from a set of example trajectories. This Machine
Learning approach is compared with the results obtained when
using the BADA (Base of Aircraft Data) reference mass or the two
state-of-the-art mass estimation methods. In these experiments,
9 different aircraft types are considered.

When compared with the baseline method (resp. the mass
estimation methods), the Machine Learning approach reduces
the RMSE (Root Mean Square Error) on the predicted altitude
by at least 58 % (resp. 27 %) when assuming the speed profile
to be known, and by at least 29 % (resp. 17 %) when using the
BADA speed profile except for the aircraft types E145 and F100.
For these types, the observed speed profile is far from the BADA
speed profile.

Index Terms—aircraft trajectory prediction, mass estimation,
BADA, Machine Learning

INTRODUCTION

Aircraft trajectory prediction has always been a key issue
for many on-board and ground-based applications in Air
Transportation. It is even more true since the current Air Traf-
fic Management and Control (ATM/ATC) system is shifting
towards trajectory-based operations within the framework of
the European SESAR program ([1]) and its U.S. counterpart
NextGen ([2]).

As we are now in an era of global networks, where data
flows between flying aircraft and ground-based control sys-
tems, one could think that ground-based trajectory prediction is
no longer necessary: accurate on-board trajectory predictions
could be downloaded directly to the ground systems. Although
this last statement is actually true, we are still in great need of
accurate ground-based trajectory predictors. Some of the most
recent algorithms designed to solve ATM/ATC problems do
require to test a large number of alternative trajectories and it
would be impractical to download them all from the aircraft.
As an example of such algorithms, in [3] an iterative quasi-
Newton method is used to find trajectories for departing air-
craft, minimizing the noise annoyance. Another example is [4]

where Monte Carlo simulations are used to estimate the risk
of conflict between trajectories in a stochastic environment.
Some of the automated tools currently being developped for
ATM/ATC can detect and solve conflicts between trajectories
(see [5] for a review). These algorithms may use Mixed
Integer Programming ([6]), Genetic Algorithms ([7], [8]), Ant
Colonies ([9]), or Differential Evolution or Particle Swarm
Optimization ([10]) to find optimal solutions to air traffic
conflicts.

To be efficient, all these methods require a fast and accurate
trajectory prediction, and the capability to test a large number
of “what-if” trajectories. Such requirements forbid the sole
use of on-board trajectory prediction, which is certainly the
most accurate, but is not sufficient for these most promising
applications.

Most trajectory predictors rely on a point-mass model to
describe the aircraft dynamics. The aircraft is simply modeled
as a point with a mass, and the second Newton’s law is
applied to relate the forces acting on the aircraft to the
inertial acceleration of its center of mass. Such a model is
formulated as a set of differential algebraic equations that
must be integrated over a time interval in order to predict the
successive aircraft positions, knowing the aircraft initial state
(mass, current thrust setting, position, velocity, bank angle,
etc.), atmospheric conditions (wind, temperature), and aircraft
intent (thrust profile, speed profile, route).

Unfortunately, the data that is currently available to ground-
based systems for trajectory prediction purposes is of fairly
poor quality. The speed intent and aircraft mass, being con-
sidered competitive parameters by many airline operators, are
not transmitted to ground systems. The actual thrust setting
of the engines (nominal, reduced, or other, depending on the
throttle’s position) is unknown. There are uncertainties or noise
in the Weather and Radar data. The problem of unknown
parameters such as the mass, thrust law, and target speeds,
is of particular importance when predicting the aircraft climb.
Figure 1 illustrates the climb prediction problem, when using
a physical model of the aircraft dynamics.

Some studies ([11], [12], [13]) detail the potential benefits
that would be provided by additional or more accurate input
data. In other works, the aircraft intent is formalized through
the definition of an Aircraft Intent Description Language ([14],
[15]) that could be used in air-ground data links to transmit
some useful data to ground-based applications. All the neces-
sary data required to predict aircraft trajectories might become
available to ground systems someday. In the meantime, we
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Figure 1: The ground-based aircraft climb prediction problem

propose to learn some of the unknown parameters of the point-
mass model from the data that is already available today,
typically from the observed radar tracks of past and current
flights.

In this paper, we apply Machine Learning techniques to
learn the aircraft mass. We show how our method improves the
climb prediction when compared with the baseline method (see
Figure 2) that uses the reference mass from the Eurocontrol
Base of Aircraft Data (BADA). We also compare our Machine
Learning approach to two other mass estimation methods
([16], [17]) that rely solely on the physical model of the
aircraft dynamics to estimate the mass from the past trajectory
points.

The rest of this paper is organized as follows: Section I gives
some background on the estimation of aircraft model param-
eters and highlights the differences between mass prediction
(using Machine Learning) as we introduce it in this paper,
and mass estimation (using the physical model). Section II
details the data used in this study. Section III presents some
useful Machine Learning notions that help understanding the
methodology applied in our work. The application of Machine
Learning techniques to our mass prediction problem is de-
scribed in section IV, and the results are shown and discussed
in section V, before the conclusion.

I. BACKGROUND, MASS PREDICTION VS. ESTIMATION

A. Estimation of physical model parameters

Focusing on the aircraft climb, and considering a physical
model of the aircraft dynamics, we are interested in this paper
in estimating some key parameters for climb performance
using the past trajectory points. This approach, where some
unknown parameters are adjusted by fitting the model to the
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Figure 2: Baseline method : the BADA prediction of the future
aircraft climb

observed past trajectory, is not new. The past publications
following this path ([18], [19], [20], [21], [17], [22], [23],
[24]) propose several methods, with different choices for the
adjusted parameter (mass, or thrust, for example), the modeled
variable that is fitted on past observations (rate of climb,
energy rate), and the algorithm that is applied (stochastic
method, adaptive mechanism, least squares, etc).

In [21] Lymperopoulos, Lygeros, and Lecchini model the
aircraft mass and the wind encountered during climb as
sources of uncertainty. These stochastic variables are sampled
from chosen distributions to produce random simulated tra-
jectories. Each trajectory is then weighted according to its
probability to give the aircraft positions measured just after
takeoff. The uncertainty on the future aircraft positions is
reduced by selecting the parameters of highest probability
after a number of measurements. The method is tested in a
simulation environment. In [20], Slater introduces an adaptive
mechanism improving the trajectory prediction by dynamically
adjusting the modeled thrust. The aircraft mass is assumed
to be equal to a standard reference mass for the chosen
aircraft type. The results presented in [20] show significant
improvements in the climb prediction accuracy for simulated
data, and much fewer improvements when applied to a few
examples using real trajectories. Other works propose to adjust
the mass instead of the thrust.

Among the publications dealing with mass estimation, let us
cite [18], where Warren and Ebrahimi propose an equivalent
weight as a workaround to use a point-mass model without
knowing the actual aircraft mass. Nominal thrust and drag pro-
files are assumed. The equivalent mass is found by minimizing
the gap between the computed and observed vertical rates. A
second study ([19]) raises doubts about the reliability of the



3

vertical rate for this purpose, and suggests to use the energy
rate instead. The proposed method is tested on simulated
trajectories only. In more recent works, Schultz, Thipphavong,
and Erzberger ([17]) introduce an adaptive mechanism where
the modeled mass is adjusted by fitting the modeled energy
rate with the observed energy rate. This adaptive method
provides good results on simulated traffic and this method has
also been successfully applied on actual radar data ([25], [26]).

In [22], [23], we use a Quasi-Newton algorithm (BFGS)
combined to a mass estimation method to learn the thrust
profile minimizing the error between the modeled and ob-
served energy rate. This method has been tested on two
months of real data, showing good results. Concerning the
mass estimation method, we showed that, when using the
BADA1 model of the forces (or a similar model), the aircraft
mass can be estimated at any past point of the trajectory by
solving a polynomial equation, knowing the thrust setting at
this point. When using several points, and assuming a constant
mass over the whole trajectory segment, the mass can be
estimated by minimizing the quadratic error on the energy rate.
In our latest papers ([16], [27]), we introduce a variant of this
mass estimation method, taking the fuel burn into account,
and compare it with the adaptive method of Schultz et. al.. In
the current paper, we propose a completely different approach,
where the aircraft mass is predicted by a model learned from
examples.

B. Mass prediction vs. mass estimation

Both the adaptive ([25]) and least square ([22], [23])
methods evoked in previous subsection I-A rely solely on
the physical model to estimate the mass from past trajectory
points. The mass is adjusted so that the modeled power fits
the energy rate observed on the past points, assuming the
thrust profile to be known. This mass estimation approach is
illustrated on the left part of Figure 3.

The Machine Learning approach we introduce in this paper
makes use of additional data found in a database of trajectory
examples. The idea is to learn a prediction model from the
examples, as illustrated on the right part of Figure 3. Instead
of directly adjusting the mass on the past trajectory points,
we adjust a prediction model on a set of examples. Once
the model is calibrated, it can be used to predict the mass
on fresh trajectory inputs. The methodological issues con-
cerning model selection, parameter tuning, and performance
assessment are briefly presented in section III. For now, let
us just say that, in the Machine Learning approach, a set
of examples (yi, xi)16i6n is used to build a model which
relates the predicted variable y to some explanatory variables
x. In our case, the predicted variable y is the aircraft mass
m. Unfortunately – and this is the crux of our problem – the
actual mass is not available in our data.

In order to build examples that can be used by Machine
Learning algorithms, we propose, for each example trajectory,
to adjust a modeled mass so that the modeled power fits
the observed energy rate as best as possible on the “future”
points. Here, the terms “past” and “future” refer to the fact

1BADA: the Eurocontrol Base of Aircraft DAta

that the aircraft altitude is respectively below or above a
reference pressure altitude Hp0 , assuming we want to predict
the successive altitudes above Hp0 when the climbing aircraft
crosses altitude Hp0 . The modeled mass is adjusted using the
least square method introduced in [22], [23].

In other words, we propose to replace the actual mass m,
missing in our data, by an adjusted mass m̂future that gives
the best possible fit of the energy rate on our examples,
assuming a max climb thrust setting. This mass m̂future is the y
output variable of the prediction model learned by the Machine
Learning methods. The explanatory variables x, are computed
from the “past” data that is available when the aircraft crosses
Hp0 .

The Radar and Weather data, as well as the construction of
our examples, are described in more details in section II.

C. Applying our method in actual operations

The proposed method consists in learning a model that can
predict the aircraft mass, given Radar and Weather data inputs,
or any other relevant additionnal inputs (e.g. flight plan). This
model is learned on a dataset of example trajectories. Once
learned, it can be used for predicting the aircraft mass on fresh
input trajectories. The predicted mass can then be used as input
to the physics-based model that is already used in operations,
in order to produce an accurate trajectory prediction.

When applying such a Machine Learning method in opera-
tions, one must first collect trajectory data, build a training set,
and tune the model. This should be done for every aircraft type
for which there is sufficient training data. Tuning one model
per aircraft is no more an issue than for the standard BADA
model, for which there is also one model per aircraft type
or group of similar aircraft. Note however that, when using
a Machine Learning approach, the performance of the tuned
model highly depends on the quality of the collected data. For
more accuracy, the training datasets should be specific to each
airport or terminal area where we intend to apply our tuned
model.

Note that in that respect, our approach is much easier to put
in operations than purely data-driven methods as we still use
the physics-based model. Purely data-driven approach rely on
a statistical model to predict directly the altitude. This requires
to tune a specific model for each mode of operation (e.g. climb
at constant rate, or at constant calibrated airspeed, etc.). This
means we need sufficient data for each aircraft type and each
mode of operation, and for every airport where we intend to
use such a model. In our case, we use the Machine Learning
approach only to learn one of the input parameters – here the
mass – of the physics-based model. This model is already
in operation and remains valid whatever the chosen mode
of operation. Furthermore, for the aircraft types or airports
for which there is not enough data of sufficient quality to
learn a model predicting the mass, we can easily revert to the
mass estimated solely from the past trajectory points, or to
the reference BADA mass, while still using the physics-based
model.

Airport and airline procedures might change over years, as
well as the performances of the engines equiping the aircraft.
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Figure 3: Mass estimation (left) vs. mass prediction (right)

These changes obviously impact the performance of the tuned
model. To address this issue, one can monitor the model
performance over time and tune it again when it becomes less
performant.

II. DATA USED IN THIS STUDY

A. Data Pre-processing
Recorded radar tracks from Paris Air Traffic Control Center

are used in this study. This raw data is made of one position
report every 1 to 3 seconds, over two months (July 2006, and
January 2007). In addition, the wind and temperature data from
Météo France are available at various isobar altitudes over the
same two months.

The raw Mode-C altitude2 has a precision of 100 feet.
Raw trajectories are smoothed using splines. Basic trajectory
data is made of the following fields: aircraft position (X ,Y
in a projection plane, or latitude and longitude in WGS84),
ground velocity vector Vg = (Vx, Vy), smoothed altitude (Hp,
in feet above isobar 1,013.25 hPa), rate of climb or descent
dHp

dt . The wind W = (Wx,Wy) and temperature T at every
trajectory point are interpolated from the weather datagrid. The
temperature differential ∆T is computed at each point of the
trajectory.

Using the position, velocity and wind data, we compute the
true air speed Va. The successive velocity vectors allow us
to compute the trajectory curvature at each point. The aircraft
bank angle is then derived from true airspeed and the curvature
of the air trajectory.

Along with these variables derived from the Mode-C radar
data and the weather data, we have access to some variables
in the flight plan like the Requested Flight Level for instance.

2This altitude is directly derived from the air pressure measured by the
aircraft. It is the height in feet above isobar 1013.25 hPa.

With the weather datagrid, we have also computed the
temperature differential ∆T (weather grid) and the wind along
Walong(weather grid) at each altitude of the grid. This is done
by using the VaXY , the time, the latitude and the longitude
of the considered point. Walong is the wind along the true air
speed in the horizontal plane VaXY .

All the computed variables are summarized in table I.

B. Filtering Climb Segments
Our dataset comprises all flights departing from Paris-Orly

(LFPO) or Paris-Charles de Gaulle Airport (LFPG). Needless
to say, this approach can be replicated to other airports.

The trajectories are filtered so as to keep only the climb
segments. An additional 80 seconds is clipped from the be-
ginning and end of each segment so as to remove climb/cruise
or cruise/climb transitions.

C. Building the Sets of Examples
The climb segments are sampled every 15 seconds. From

these sampled segments, we build examples (or patterns)
containing exactly 51 points. In these examples, the first 11
points (past trajectory) are used to predict the mass. The
remaining points (future trajectory) are used to compute the
error between the predicted and actual trajectory. In this study,
we use two different datasets.

1) A small A320 dataset: In order to compare the different
Machine Learning methods, we use a small set of examples
noted A320small. This set of examples is built using climbing
segments of aircraft of type A320. The climbing segments are
sampled in order to have the 11th point always3 at 18,000ft.

3Using the smoothed altitude Hp(t), we search for the time t0 such that
Hp(t0) = 18,000 ft. Once this time is found, we sample 10 points before
and 40 points after.
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variables description
Hp geopotential pressure altitude
Vg Ground Speed
Va True Air Speed

VaXY True Air Speed in the (X,Y) plane
dair distance flown w.r.t. the air
dground distance flown w.r.t. the ground
∆T temperature differential (cf. [28])
W wind

Walong wind along VaXY
Wacross wind across VaXY
WZ vertical wind
θc drift angle

CAS Calibrated Air Speed
Mach Mach number
1/rsol curvature w.r.t. the ground
1/rair curvature w.r.t. the air
φ bank angle

e = Va
dVa
dt

+ g0
T

T−∆T

dHp

dt
specific energy rate

ew = e+
−̇→
W.
−→
Va specific energy rate corrected from

the wind effect
m̂LS estimated mass from past points us-

ing least square method [16]
eLS root mean square error obtained on

the past points using the least square
method

m̂AD estimated mass from past points us-
ing adaptive method [17]

∆T (weather grid) temperature differential on a grid of
different Hp

Walong (weather grid) wind along VaXY on a grid of dif-
ferent Hp

RFL Requested Flight Level
Speed requested speed

distance distance between airports
AO aircraft operator

DEP departing airport
ARR arrival airport

Table I: This table summarizes the variables available in our
study.

Thus, from one sampled climb segment, we build only one
example. The resulting set of examples, denoted A320small
in the following, contains 4,939 examples. It is only used to
choose a machine learning method.

2) A larger dataset with 9 aircraft types and various
altitudes: This larger dataset is used to compare the selected
Machine Learning method to the baseline BADA predictor and
to the two other methods using estimated masses (adaptive, or
least squares), on 9 different aircraft types and with various
altitudes for the “current” point.

The sampled climbing segments and the examples are built
in a different way. The raw climb segments are smoothed and
sampled every 15 seconds, starting at the first point. With
each sampled climb segment, we build as much examples
containing 51 successive points as we can. The 10 first points
of each example are considered as the “past” points. The 11th

point is the “current” point, and the next 40 points are the
“future” points used to evaluate the prediction made using the
11 first points.

As a consequence, the 11th point is not always at 18,000ft.
As we are mostly interested in altitude prediction in the en-
route airspace, we only keep the patterns with the 11th point

at an altitude above 15,000ft4 for the B744 aircraft type and
above 18,000ft for all the other aircraft types.

The multiple examples extracted from a same trajectory
might share many points. Consequently, when splitting our set
into a training set and a test set, the results would be biased
if we put some of these examples in the training set and the
others in the test set. We have been very careful not to do
that. The training and test sets are built by choosing randomly
among the trajectories, not the examples they contain.

We have considered 9 aircraft types and we have built one
examples dataset for each aircraft type. Table II shows the size
of the different datasets. The selected aircraft types are very
different: for example, the E145 is a short haul aircraft with
a 18,500 kg reference mass while the B744 (Boeing 747-400)
is a long haul aircraft with a 285,700 kg reference mass.

type number of climbing segments number of examples
A319 1863 15702
A320 5729 65514
A321 1866 21789
A332 1475 28629
B737 344 2178
B744 350 2750
B772 910 8525
E145 851 8310
F100 660 7430

Table II: Size of the different sets. Only the climbing segments
generating at least one example in our final examples set are
counted here. In our data, no flight has more than one climbing
segment generating examples.

D. Estimation of the mass to be predicted

The actual mass is not available in our radar data set.
Thus, as explained in section I-B, we have used the least
square method proposed in [16] on the 41 future points
of the trajectories. This method estimates a mass sequence
corresponding to a sequence of trajectory points. This mass
sequence takes into account the fuel consumption. It minimizes
the sum of the squared differences between the observed
specific energy rate and the computed specific power (see [16]
for details).

Let us denote m̂11,future the first mass of this sequence,
that is the mass at the “current” point (numbered 11 in
our examples). This estimated mass m̂11,future is the output
variable y of the prediction model we want to learn from
examples. To estimate this mass for each of our example
trajectories, we need to make some hypotheses concerning the
thrust settings, which are not available in our data. We assume
a standard BADA max climb thrust, during all climb.

As a consequence, the estimated mass might be quite
different from the actual one, especially for aircraft climb-
ing at reduced power. This difference is not of crucial
importance, however, as there is an infinity of couples
(mass, thrust_profile) that give exactly the same trajectory.
Intuitively, a heavy aircraft with maximum climb thrust is

4The chosen minimum flight level for the Boeing 747-400 is lower than
for the other aircraft types because we wanted to have enough examples in
our dataset.
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equivalent to a lighter aircraft with reduced thrust. Although
it might not be realistic, the modeled mass can be adjusted so
as to give an accurate prediction of the energy rate. Knowing
the energy rate and the speed intent, one can predict the future
altitudes of the aircraft.

E. Approximation of the example trajectories when using the
estimated mass m̂11,future

For verification purposes, let us assess the accuracy of the
trajectory computed using the estimated mass on our set of ex-
amples. To do this, we compute the “future” trajectories using
the speed profile Va = Va

(obs)(t) and the mass m̂11,future,
and observe the error in altitude.

time range mean stdev mean abs rmse max abs
t > 0 31.7 144 111 147 1407

t = 600 s -63.1 121 105 137 817

Table III: Statistics, in feet, on the difference between the com-
puted and observed altitudes

(
H

(pred)
p (m̂11,future)−H(obs)

p

)
at different time ranges for the examples set A320small.

Looking at table III, we see that the differences between
the predicted altitudes and the observed ones are limited5.
There remains an incompressible error, though, which might
be due to the fact that some aircraft might not actually follow a
constant max climb thrust law, nor a constant reduced power
climb. They might switch from one to the other during the
climb. Learning the thrust settings is not the subject of the
current paper, and has already been investigated in [23], and
we shall assume a constant max climb thrust in the rest of this
work.

Another possible source of error is the estimation of the true
airspeed Va, which relies on the observed ground speed and the
wind forecast. Due to the uncertainties in the weather forecast,
and the possible observation errors in the ground speed, the
“observed” airspeed profile might lack accuracy.

In any case, table III gives us an order of magnitude of
the best possible approximation of the “future” trajectory that
we can achieve with our data and assumptions, when using
the estimated mass m̂11,future. This approximation error is
computed on our set of examples A320small, for verification
purposes. It is not representative of the prediction error that
will be made when considering fresh trajectories.

Let us now see how we can apply Machine Learning
methods to build a model that predicts m̂11,future, and that
will allow us to predict new trajectories.

III. MACHINE LEARNING

This section presents some useful Machine Learning no-
tions. We want to predict a variable y, here the aircraft mass m
of a given trajectory, from a vector of explanatory variables x,
which in our case is the data extracted from the past trajectory
points and the weather forecast. This is typically a regression
problem. Naively said, we want to learn a function f such
that y = f(x) for all (x, y) drawn from the distribution
(X,Y ). Actually, such a function does not exist, in general.

5Especially when compared with the first line of table IX.

For instance, if two ordered pairs (x, y1) and (x, y2) can be
drawn with y1 6= y2, f(x) cannot be equal to y1 and y2 at the
same time.

A way to solve this issue is to use a real-valued loss function
L. This function is defined by the user of the function f . The
value L(f(x), y) models a cost for the specific use of f when
(x, y) is drawn. With this definition, the user wants a function
f minimizing the expected loss R (f) defined by equation (1).
The value R (f) is also called the expected risk.

R(f) = E(X,Y ) [L (f(X), Y )] (1)

However, the main issue in order to choose a function f
minimizing R (f) is that we do not know the joint distribution
(X,Y ). We only have a set of examples of this distribution.

A. Learning from examples

Let us consider a set of n examples S = (xi, yi)16i6n
coming from independent draws of the same joint distribution
(X,Y ). We can define the empirical risk Rempirical by the
equation below:

Rempirical(f, S) =
1

|S|
∑

(x,y)∈S

L (f(x), y) . (2)

Assuming that the values (L(f(x), y))(x,y)∈S are independent
draws from the same law with a finite mean and variance,
we can apply the law of large numbers giving us that
Rempirical(f, S) converges to R(f) as |S| approaches +∞.

Thereby, the empirical risk is closely related to the expected
risk. So, if we have to select f among a set of functions
F minimizing R(f), using a set of examples S, we select
f minimizing Rempirical(f, S). This principle is called the
principle of empirical risk minimization.

Unfortunately, choosing f minimizing Rempirical(f, S) will
not always give us f minimizing R(f). Actually, it depends on
the “size”6 of F and the number of examples |S| ([29], [30]).
The smaller is F and the larger is |S|, the more the principle of
empirical risk minimization is relevant. When these conditions
are not satisfied, the selected f will probably have a high R(f)
despite a low Rempirical(f, S). In this case, the function f is
overfitting the examples S.

These general considerations above have practical conse-
quences on the use of Machine Learning. Let us denote fS
the function in F minimizing Rempirical(., S). The expected
risk using fS is given by R(fS). We use the principle of
empirical risk minimization. As stated above, some conditions
are required for this principle to be relevant. Concerning the
size of the set of examples S: the larger, the better. Concerning
the size of F , there is a tradeoff. The larger F is, the smaller
min
f∈F

R(f) is. However, the larger F is, the larger the gap

between R(fS) and min
f∈F

R(f) becomes. This is often referred

to as the bias-variance tradeoff.

6The “size” of F refers here to the complexity of the candidate models
contained in F , and hence to their capability to adjust to complex data. As
an example, if F is a set of polynomial functions, we can define the “size”
of F as the highest degree of the functions contained in F . In classification
problems, the “size” of F can be formalized as the Vapnik-Chervonenkis
dimension.
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B. Accuracy Estimation

In this subsection, we want to estimate the accuracy ob-
tained using a Machine Learning algorithm A. Let us denote
A[T ] the prediction model found by algorithm A when mini-
mizing Rempirical(., S)7, considering a set of examples S.

The empirical risk Rempirical(A[S], S) is not a suitable
estimation of R(A[S]): the law of large numbers does not
apply here because the predictor A[S] is neither fixed nor
independent from the set of examples S.

One way to handle this is to split the set of examples S
into two independent subsets: a training set ST and another
set SV that is used to estimate the expected risk of A[ST ], the
model learned on the training set ST . For that purpose, one
can compute the holdout validation error Errval as defined
by the equation below:

Errval(A, ST , SV ) = Rempirical(A[ST ], SV ). (3)

Cross-validation is an other popular method that can be used
to estimate the expected risk obtained with a given learning
algorithm. In a k-fold cross-validation method, the set of
examples S is partitioned into k folds (Si)16i6k. Let us denote
S−i = S\Si. In this method, k trainings are performed in order
to obtain the k predictors A[S−i]. The mean of the holdout
validation errors is computed, giving us the cross-validation
estimation below:

CV (A, S) =

k∑
i=1

|Si|
|S|

Errval(A, S−i, Si). (4)

This method is more computationally expensive than the
holdout method but the cross-validation is more accurate than
the holdout method ([31]). In our experiments, the folds
were stratified. This technique is said to give more accurate
estimates ([32]).

The accuracy estimation has basically two purposes:
i) model selection in which we select the “best” model using
accuracy measurements and ii) model assessment in which
we estimate the accuracy of the selected model. For model
selection, the set SV in Errval(A, ST , SV ) is called validation
set whereas in model assessment this set is called testing set.

C. Hyperparameter Tuning

Some learning algorithms have hyperparameters. These hy-
perparameters λ are the parameters of the learning algorithm
Aλ. These parameters cannot be adjusted using the empirical
risk because most of the hyperparameters are directly or
indirectly related to the size of F . Thus, if the empirical risk
was used, the selected hyperparameters would always be the
ones associated to the largest F .

These hyperparameters allow us to control the size of
F in order to deal with the bias-variance tradeoff. These
hyperparameters can be tuned using the holdout method on
a validation set for accuracy estimation. In order to find λ
minimizing the accuracy estimation we have used a grid search

7Actually, depending on the nature of the minimization problem and
chosen algorithm, this predictor A[S] might not be the global optimum
for Rempirical(., S), especially if the underlying optimization problem is
handled by local optimization methods.

which consists in an exhaustive search on a predefined set
of hyperparameters. The algorithm 1 obtained is a learning
algorithm without any hyperparameters. In this algorithm, 20%
of the training set is held out as a validation set.

function TUNEGRID(Aλ,grid)[T ]
(TT , TV )← split(80%,20%)(T )
λ∗ ← argmin

λ∈grid
Errval(Aλ, TT , TV )

return Aλ∗ [T ]
end function

Algorithm 1: Hyperparameters tuning for an algorithm Aλ and
a set of examples T (training set).

IV. APPLYING MACHINE LEARNING TO OUR PROBLEM

A. Different Sets of Variables

We want to find f such that m̂11,future = f(x), with x the
information available when the prediction is computed. The
choice of explanatory variables x is of considerable importance
to the performance of the prediction model.

In this work, the candidate explanatory variables x are clas-
sified in five groups of variables depending on their provenance
and their type. These groups are described in table IV. The
r (“radar”) group contains 297 variables extracted from the
available Radar data, for the 11 past points of each trajectory.
The m̂ (“mass”) group contains 3 numerical variables. Two of
them are masses estimated using the adaptive ([25]) and least
square ([22], [23]) methods. eLS is the root mean squared error
of the energy rate prediction obtained with the least square
method on the past points of the trajectory. The w (“weather”)
group contains 20 numerical variables. This group contains
∆T (weather grid) and Walong (weather grid) computed on the
last point of the past trajectory. These quantities are computed
at the 10 different altitudes of the weather grid. Finally, the p
(“flight plan”) group contains 3 numerical variables and group
c contains 3 categorical variables, also extracted from the flight
plan.

Several combinations of these groups are tested, as specified
in table IV: r, m̂r, m̂rw, m̂prw and cm̂prw. This last group
contains categorical variables that can be handled straightfully
by the Gradient Boosting Machine (GBM) algorithm, but not
by the other Machine Learning methods that we used.

B. Machine Learning Algorithms

Five different classical Machine Learning algorithms were
tested in this study. These algorithms optimize the risk given
by a quadratic loss L(ŷ, y) = (ŷ − y)

2. A multiple linear
regression on the k variables selected by a forward-selection
MLR-FSk ([33], [34]), a Ridge regression Ridgeλ ([35]) with
λ the penalty hyperparameter, and a principal component
regression PCRk ([36]) on the k principal components were
tested. In these three methods, the obtained model is a lin-
ear combination of the explanatory variables. However, the
obtained models are different because these algorithms have
different ways to control the set of functions F through their
hyperparameters. A single-layer neural network NNet(n,λ)
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variables set of variables
r m̂r m̂rw m̂prw cm̂prw

Hp

X X X X X

dHp

dt
d2Hp

dt2

Vg
dVg

dt
Va
dVa
dt

VaXY
dair − dair11

dground − dground11
∆T
W

Walong
dWalong
dt

Wacross
WZ
dWZ
dt
θc

CAS
dCAS
dt

Mach
dMach
dt

1/rsol
1/rair
φ
e

ew
m̂LS

X X X XeLS
m̂AD

∆T (weather grid)
X X X

Walong (weather grid)
RFL

X XSpeed
distance

AO
XDEP

ARR

Table IV: This table summarizes the different sets of variables
used by the Machine Learning algorithms.

([37]) was tested with a weight decay λ and a number of
n hidden units. A stochastic gradient boosting tree algorithm
GBM(m,J,ν) ([38]) was tested with m the boosting iterations,
J the interaction depth and ν the shrinkage parameter. With
this method the obtained model is a sum of m regression
trees. As opposed to the other methods, this method can easily
handle categorical variables without any prior encoding. The
hyperparameters grids for these algorithms are presented in
table V.

method hyperparameter grid
MLR-FSk k = J2;min(120, nvar)K
Ridgeλ λ = 10J−5;1K ∪ 0.5× 10J−5;0K

PCRk k = J2;min(120, nvar)K

NNet(n,λ)
n = {2, 3, 4, 5, 6}
λ = {0.1, 0.2, 0.3, 0.4, 0.5}

GBM(m,J,ν)

m = {1000, 1500, 2000}
J = {3, 5, 10, 15}
ν = {0.001, 0.0025, 0.005, 0.01, 0.025, 0.05}

Table V: Grid of hyperparameters used in our experiments.

Select Valid

Test set forTraining set for

Figure 4: Cross-validation for model assessment, with an
embedded holdout validation for hyperparameter tuning.

V. RESULTS AND DISCUSSION

All the statistics presented in this section are computed
using a stratified 10-fold cross-validation embedding the hy-
perparameter selection. Figure 4 illustrates how the data is
partitionned, denoting λ the hyperparameter vector. Our set of
examples S is partitioned in 10 folds (Si)16i610. The hyper-
parameters used to learn from S−i are selected using 20% of
the fold S−i as a validation set. The model learned with these
hyperparameters on S−i is then used to predict the mass on the
test set Si. Obviously, the intersection of the training set S−i
and the test set Si is empty: they do not share any example.
Overall, our set of predicted values (masses or altitudes) is
the concatenation of the ten TuneGrid(Aλ, grid)[S−i] (Si)
(see algorithm 1). Therefore, all the statistics presented in this
section are computed on test sets. Each large set of examples
S corresponding to one of the 9 aircraft types is split in
10 folds (Si)16i610, randomly choosing the climb segments.
Thus, all the examples generated by one climbing segment are
only in one fold Si. This guarantees that the examples in fold
Si are independent from the ones in S−i = S\Si.

A. Prediction of the Mass m̂11,future

The results obtained with the Machine Learning algorithm
on the set A320small are reported in table VI. The results
obtained with the BADA reference mass mref , as well as the
masses m̂LS and m̂Ad estimated with the least square and
adaptive methods, are also stated in this table as a baseline.
Looking at the 6th column showing the root mean squared
error (RMSE), we can see that all linear models have about the
same performance. Equally, NNet and GBM perform similarly,
with a slight advantage for the latter. For all methods, the
more variables we have, the more accurate the prediction is.
However, the error on the mass is not significantly reduced
by adding the group of variables w (“wind”) to the set m̂r.
The greater error reduction is obtained by adding the group m̂
(“mass”) to the “radar” set r, especially for the linear models.
This was expected, as these estimated masses are highly
correlated with m̂11,future, with a correlation coefficient above
0.94. In comparison, all the variables in set r have a correlation
coefficient with m̂11,future below 0.61. However, one has to
keep in mind that these correlation coefficients are computed
taking the variables one by one. In a regression context, all
these variables are used altogether and as stated in [39]:
variables that are useless by themselves can be useful together.

Among the different machine learning methods, the best
results for the A320small dataset are obtained with the GBM
method, with the variables cm̂prw. Throughout the rest of
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set method mean stdev mean abs rmse max abs
- mref 0.366 7.56 5.93 7.57 31.7
- m̂LS 2.46 3.26 2.94 4.08 34.9
- m̂Ad 1.27 3.28 2.71 3.52 21.7
r MLR-FS 0.0691 2.65 1.88 2.65 42.5
r Ridge 0.0739 2.66 1.88 2.66 42.9
r PCR 0.079 2.81 2.04 2.81 44
r NNet 0.0493 2.31 1.68 2.31 32.3
r GBM 0.0747 2.28 1.69 2.28 19.6

m̂r MLR-FS 0.062 2.43 1.75 2.43 36
m̂r Ridge 0.0623 2.43 1.75 2.43 37.2
m̂r PCR 0.0652 2.43 1.75 2.43 36.7
m̂r NNet 0.0501 2.23 1.65 2.23 22.5
m̂r GBM 0.0537 2.22 1.65 2.22 23.9

m̂rw MLR-FS 0.0706 2.42 1.74 2.42 36.3
m̂rw Ridge 0.0605 2.43 1.74 2.43 37.5
m̂rw PCR 0.064 2.42 1.74 2.42 37.2
m̂rw NNet 0.0435 2.21 1.63 2.21 24.5
m̂rw GBM 0.0655 2.21 1.64 2.21 23.2
m̂prw MLR-FS 0.0643 2.37 1.7 2.37 35.2
m̂prw Ridge 0.0589 2.38 1.7 2.38 36.9
m̂prw PCR 0.063 2.38 1.71 2.38 36.9
m̂prw NNet 0.0392 2.17 1.59 2.17 25.8
m̂prw GBM 0.0548 2.13 1.56 2.13 22.6
cm̂prw GBM 0.054 2.05 1.49 2.05 22.9

Table VI: Statistics, in percentage, on the relative error be-
tween the mass computed by a prediction model and the mass
m̂11,future adjusted for each example trajectory, for the dataset
A320small.

the document we will use this setup (GBM with cm̂prw) and
compare it with the BADA baseline and the mass estimation
methods, using the 9 large sets of examples.

The results obtained for the larger datasets corresponging
to 9 different aircraft types are presented in Table VII. When
compared with the BADA reference mass method, the RMSE
of the relative error on the mass is divided at least by 2
when using the GBM method. When compared with the two
mass estimation methods, the RMSE of the relative error on
the mass is reduced by at least 30 % when using the GBM
method.

B. Trajectory Prediction using the Predicted Mass

In order to actually predict a trajectory using the BADA
model and assuming a max climb thrust, one has to specify
a mass, but also a speed profile. Both are usually unknown
from ground systems. In our experiment, we want to evaluate
the impact of the predicted mass on the trajectory prediction.
Thus, we assume the speed profile to be known. The trajectory
is computed using the mass predicted by the Machine Learning
model and the speed profile Va = Va

(obs)(t) observed on the
future points. With this setup, we just look at the influence
of the predicted mass – and the energy rate prediction –
on the altitude prediction, disregarding the additional errors
that might be induced by erroneous assumptions on the speed
intent.

The results obtained on the trajectory prediction are pre-
sented in table VIII. The performance ranking of the methods
is the same as in table VII. This was to be expected, as both
the computation of the response variable m̂11,future in our
examples and the energy rate and altitude prediction using the
predicted mass rely on the same underlying physical model.

type method mean stdev mean abs rmse max abs
A319 mref 0.402 8.11 6.3 8.12 28.5
A319 m̂LS 3.51 4.66 4.22 5.84 100
A319 m̂Ad 1.68 4.08 3.45 4.42 33.6
A319 GBM 0.508 2.54 1.87 2.59 34.1
A320 mref 0.0414 7.32 5.79 7.32 33.8
A320 m̂LS 2.49 3.08 3.1 3.97 43.4
A320 m̂Ad 1.45 3.42 2.91 3.71 26
A320 GBM 0.497 2 1.53 2.06 25.2
A321 mref -3.72 8.64 7.88 9.4 28
A321 m̂LS 4.18 2.91 4.41 5.09 34
A321 m̂Ad 2.1 3.71 3.35 4.26 25.8
A321 GBM 0.533 2.28 1.67 2.34 24.9
A332 mref -14.2 9.59 15.1 17.1 30.2
A332 m̂LS -0.0847 3.9 2.66 3.9 28.7
A332 m̂Ad -4.34 5.74 5.88 7.19 25.1
A332 GBM 0.384 2.46 1.61 2.49 25.3
B737 mref -2.59 9.07 8.22 9.43 25.1
B737 m̂LS 8.76 10.7 9.38 13.8 75.3
B737 m̂Ad 3.77 7.53 5.84 8.42 34.7
B737 GBM 0.558 3.82 2.75 3.86 20.3
B744 mref -22.7 6.57 22.8 23.6 39
B744 m̂LS 3.34 3.58 3.61 4.89 27.9
B744 m̂Ad -8.23 6.26 8.74 10.3 26.8
B744 GBM 0.397 2.54 1.86 2.57 13.7
B772 mref -16.4 6.2 16.6 17.6 30.6
B772 m̂LS 1.43 2.25 2.06 2.67 30.3
B772 m̂Ad -3.29 4.03 4.14 5.2 16.8
B772 GBM 0.403 1.48 1.15 1.53 16.1
E145 mref 0.993 7.75 5.75 7.82 35.1
E145 m̂LS 5.68 4.42 6.13 7.2 28.6
E145 m̂Ad 3.71 4.34 4.61 5.71 23.7
E145 GBM 0.755 2.72 2.05 2.82 15.9
F100 mref 1.02 12.5 11.1 12.5 34.3
F100 m̂LS 1.92 4.8 3.95 5.16 40.6
F100 m̂Ad 1.29 5.44 4.49 5.59 22.7
F100 GBM 0.496 3.57 2.61 3.6 21.1

Table VII: Statistics, in percentage, on the relative error
between the mass computed by a prediction model and the
mass m̂11,future adjusted for each example trajectory.

Thus, an accurate mass prediction is likely to produce an
accurate altitude prediction.

Using the GBM algorithm with the set cm̂prw, the RMSE
on the altitude at a 10 minutes look-ahead time is reduced
by at least 58 % when compared with the baseline obtained
with the BADA reference mass mref . When compared with
the two mass estimation methods, the RMSE is reduced by at
least 28 % when using the GBM method.

C. Results using the BADA Speed Profile

In the previous subsection, we used the observed speed pro-
file Va = Va

(obs)(t) because we were interested in assessing
the errors related to a wrong mass prediction. However, in
real life, this observed speed profile is not known when the
predicted trajectory is computed. Thus, the results in subsec-
tion V-B are not representative of what would be obtained in
an operational context. For want of anything better one can
use the speed profile specified in the BADA model.

Using this BADA speed profile, table IX presents the
statistics on the error on the predicted altitude at time t =
600 s. Considering the RMSE (6th column), we see that the
performance ranking of the different methods is not as clear-
cut as when the speed profile is assumed to be perfectly known.
However, for all aircraft types except E145, the Machine
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type method mean stdev mean abs rmse max abs
A319 mref 1.38 1416 1084 1416 5513
A319 m̂LS -566 824 729 999 13084
A319 m̂Ad -261 752 614 796 6210
A319 GBM -57.4 484 355 488 5561
A320 mref 69.8 1345 1073 1347 5473
A320 m̂LS -419 599 567 730 7082
A320 m̂Ad -228 663 549 701 5755
A320 GBM -56.2 403 303 406 5552
A321 mref 757 1633 1508 1800 5673
A321 m̂LS -745 558 799 931 6487
A321 m̂Ad -373 709 627 801 5481
A321 GBM -92.9 456 333 465 5319
A332 mref 2712 1877 2876 3298 6671
A332 m̂LS 72.5 754 554 758 4139
A332 m̂Ad 829 1091 1145 1370 4813
A332 GBM -21.7 479 308 479 3890
B737 mref 500 1767 1619 1836 4873
B737 m̂LS -1533 1859 1669 2409 11217
B737 m̂Ad -696 1421 1113 1582 6282
B737 GBM -141 752 557 765 4155
B744 mref 5355 1659 5380 5606 10566
B744 m̂LS -743 803 813 1094 5592
B744 m̂Ad 1866 1475 1987 2378 6974
B744 GBM -112 604 439 614 3229
B772 mref 3888 1466 3915 4155 7964
B772 m̂LS -261 508 440 571 6121
B772 m̂Ad 770 906 944 1189 4057
B772 GBM -49.1 338 254 341 3571
E145 mref -69.1 1847 1381 1848 7380
E145 m̂LS -1208 1049 1355 1600 5745
E145 m̂Ad -753 1053 1042 1294 5822
E145 GBM -47.2 694 498 696 4781
F100 mref -71.7 2402 2160 2403 5582
F100 m̂LS -270 975 787 1012 6800
F100 m̂Ad -154 1104 906 1115 4653
F100 GBM 10.1 730 535 730 4348

Table VIII: Statistics, in feet, on the difference between the
predicted and observed altitudes

(
H

(pred)
p (m̂11)−H(obs)

p

)
at

time t = 600 s. The trajectories are computed using the speed
profile Va = Va

(obs)(t).

Learning approach using GBM still significantly improves the
altitude prediction when compared with the baseline BADA
method, with benefits ranging from 29 % (F100) to about
85 % (B772 and B744), in percentage. For the E145 type,
we see that neither the GBM method nor the mass estimation
methods improve the results.

When comparing GBM with the mass estimation methods,
disregarding the E145 case, we see that GBM performs better,
with a benefit of at least 17 %, in all cases except for type
F100 where the performances are similar.

The reason why the performance ranking of the different
methods changes when taking the default BADA speed intent
instead of the observed speed profile is quite simple. When in-
vestigating our results, we found out huge differences between
the actual speed profile and the BADA speed profile, especially
for the aircraft types E145, F100, and B744. The root mean
square of

(
Va

(BADA)(Hp
(obs))− Va(obs)

)
for the aircraft E145,

F100 and B744 are respectively 76 kts, 42 kts and 36 kts while
it is around 20 kts for the other aircraft types. The prediction
for the B744 is still significantly improved when compared
with the reference mass method because this reference mass
is very different from the mass m̂11,future. For the two
other aircraft types for which Va

(BADA) is not in accordance

with the observed speed Va
(obs), the benefit of learning or

estimating the mass is pretty much reduced, because of this
poor estimation of the speed profile.

Note that if we focus on the 6 aircraft types for which
the speed profile is relatively correct, the RMSE reduction
ranges from 46 % to 86 % when comparing the Machine
Learning approach with the BADA baseline, and from 17 %
to 49 % when comparing with the mass estimation methods.
In future work, the results might be improved by learning a
model computing the future speed profile from the available
variables.

type method mean stdev mean abs rmse max abs
A319 mref 274 1472 1176 1497 5315
A319 m̂LS -287 1091 856 1129 11523
A319 m̂Ad 24.9 991 775 991 5749
A319 GBM 237 772 605 808 5350
A320 mref 290 1420 1165 1449 5753
A320 m̂LS -187 876 683 896 6910
A320 m̂Ad 7.8 901 697 902 6525
A320 GBM 187 715 553 739 6815
A321 mref 863 1683 1588 1891 6154
A321 m̂LS -646 878 883 1090 5904
A321 m̂Ad -262 952 766 987 5225
A321 GBM 33.1 783 571 784 4627
A332 mref 2622 1820 2783 3192 6769
A332 m̂LS -13.8 862 619 862 5568
A332 m̂Ad 729 1109 1096 1327 5622
A332 GBM -107 673 479 682 5217
B737 mref 606 1750 1619 1852 4157
B737 m̂LS -1480 1930 1680 2432 11105
B737 m̂Ad -608 1451 1138 1572 6310
B737 GBM -40.8 796 616 797 3672
B744 mref 5558 1646 5580 5797 10183
B744 m̂LS -622 1056 950 1226 5826
B744 m̂Ad 2014 1459 2131 2487 6159
B744 GBM 12.4 844 649 844 3495
B772 mref 3728 1413 3750 3987 7145
B772 m̂LS -280 693 580 747 5551
B772 m̂Ad 618 940 905 1125 3400
B772 GBM -80.2 534 425 540 3513
E145 mref 1623 1801 1909 2425 7428
E145 m̂LS 460 2462 1976 2504 12908
E145 m̂Ad 934 2300 1931 2482 9650
E145 GBM 1667 2064 2032 2653 8280
F100 mref 556 1879 1616 1959 6539
F100 m̂LS 383 1266 1066 1323 5558
F100 m̂Ad 494 1211 1055 1308 4736
F100 GBM 642 1229 1166 1387 4940

Table IX: These statistics, in feet, are computed on the
differences between the predicted altitude and the observed
altitude

(
H

(pred)
p (m̂11)−H(obs)

p

)
at the time t = 600 s.

The trajectories are computed using the BADA speed profile
Va = VaBADA.

D. Discussion on the results

The mass estimation methods rely on a physical model
(BADA) and the past trajectory points to compute the pre-
diction. When making this prediction, we implicitely assume
that the thrust law for the future points is the same as for
the past points (e.g. max climb thrust all along the climb).
This assumption might not always be true, however. The pilot
may change the thrust settings during the climb for number
of reasons : Air Traffic Control procedures or instructions,
airline procedures, noise abatement, etc. Consequently, if our
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Figure 5: This figure portrays the computed specific power SP
and the observed specific energy rate ew. Only one aircraft is
considered here, however different masses are used to compute
the specific power SP . According Newton’s law, the specific
power SP of the aircraft is equal to the observed specific
energy rate ew. The past points have a negative time.

assumption on the future thrust setting is wrong, this will
result in a wrong model of the specific power, as illustrated
on figure 5. On this example, the observed energy rate ew
shows high variations before t = 0, and seems to stabilize at
a higher level after t = 0. This is a typical case where the
least square estimation method performs poorly : the modeled
specific power (SP (m̂LS) on the figure) is adjusted on the
points before t = 0, and gives a poor prediction after t = 0.
The adaptive method performs slightly better: SP (m̂Ad) is
closer to ew on the future points. This is due to the adaptive
mechanism limiting the influence of high variations of the
observed energy rate.

On the example in figure 5, we see that the modeled power
SP (m̂predicted) using the predicted mass fits the observed energy
rate ew quite well on the points after t = 0. It is also quite
close to SP (m̂11,future), which is the best approximation we
can make when using the mass adjusted on the future points.

In all methods, the mass is computed from the data that
is available at t = 0 i.e. at the moment when the trajectory
prediction would be computed in an operational context.
However, the Machine Learning models make use of far more
variables than the mass estimation methods. For instance,
Machine Learning methods can use the distance between the
departure and arrival airports as an explanatory variable. Such
data is irrelevant in a physical model of the forces, though it
does bring some information on the actual mass: the take-off
weight of an aircraft depends on the fuel necessary to cross
the distance to go. The Machine Learning approach can make
use of such information, whereas the mass estimation methods
cannot.

CONCLUSION

To conclude, let us summarize our approach and findings,
before giving a few perspectives on future works. In this study,
we have tested Machine Learning methods using real Mode-C
radar data. A model predicting the aircraft mass from a vector
of explanatory variables is learned using Machine Learning
techniques. This model is learned from a set of examples in

which the response variable m̂11,future is extracted from the
“future” points of each example trajectory.

We have compared our Machine Learning approach with the
baseline Eurocontrol BADA (Base of Aircraft Data) method
and with two state-of-the-art methods where the mass is esti-
mated using the past trajectory points only. This comparison
is made using a 10-fold cross-validation and for nine different
aircraft types departing from the two main airports in Paris
area.

In a first step, we have assumed the “future” speed profile
to be perfectly known so as to assess only the influence of the
mass accuracy on the altitude prediction. When comparing our
Machine Learning approach with the baseline, the RMSE on
the predicted altitude is reduced by at least 58 %, and up to
nearly 92 %, depending on the aircraft type. When comparing
with the mass estimation methods, the RMSE reduction when
using our method ranges from about 28 % to 52 %

In a second step, we have used the default BADA speed
profile so as to be as close as possible to the operational
context where the actual speed intent is not known. In this
context, the benefit of learning or estimating the mass is greatly
reduced when the default BADA speed profile is far from the
actual speed profile, which was the case for three aircraft types
out of nine in our experimental setup. For the 6 remaining
aircraft types, the reduction in RMSE on the altitude prediction
ranges from 46 % to 86 % when comparing the Machine
Learning approach with the BADA baseline, and from 17 %
to 49 % when comparing with the mass estimation methods.

Concerning the 3 aircraft types (F100, E145, B744) for
which the BADA speed profile poorly approximates the actual
speed profile, the results still show a 85 % reduction in RMSE
for the B744 type when compared with the baseline, and a
28 % reduction when comparing with the mass estimation
methods. This is because the actual mass for this aircraft
(Boeing 747-400) is also very poorly approximated by the
BADA reference mass: Improving the mass prediction for such
a heavy aircraft still does improve the altitude prediction, even
when the speed profile is poorly estimated. For the F100 type
(Fokker 100), the Machine Learning approach and the mass
estimation methods give similar results, with a reduction in
RMSE around 30 %. Finally, there is only one aircraft type
(E145) for which the poor BADA approximation of the speed
profile cancels the benefits of learning or estimating the mass.

In future work, these results might be improved again by
learning a model predicting the future speed profile from the
explanatory variables.

From an operational point of view, the resulting improve-
ment in the climb prediction accuracy would certainly benefit
air traffic controllers, especially in the vertical separation task
as shown in [17]. In future works, it could be interesting to test
this method on Mode-S radar data which are more accurate
than Mode-C radar data, and to extend our study to other
airports.

REFERENCES

[1] SESAR Consortium. Milestone Deliverable D3: The ATM Target
Concept. Technical report, 2007.



12

[2] H. Swenson, R. Barhydt, and M. Landis. Next Generation Air Trans-
portation System (NGATS) Air Traffic Management (ATM)-Airspace
Project. Technical report, National Aeronautics and Space Administra-
tion, 2006.

[3] X. Prats, V. Puig, J. Quevedo, and F. Nejjari. Multi-objective optimi-
sation for aircraft departure trajectories minimising noise annoyance.
Transportation Research Part C, 18(6):975–989, 2010.

[4] G. Chaloulos, E. Crück, and J. Lygeros. A simulation based study of
subliminal control for air traffic management. Transportation Research
Part C, 18(6):963–974, 2010.

[5] James K Kuchar and Lee C Yang. A review of conflict detection and
resolution modeling methods. Intelligent Transportation Systems, IEEE
Transactions on, 1(4):179–189, 2000.

[6] Lucia Pallottino, Eric M Feron, and Antonio Bicchi. Conflict resolution
problems for air traffic management systems solved with mixed integer
programming. Intelligent Transportation Systems, IEEE Transactions
on, 3(1):3–11, 2002.

[7] J. M. Alliot, Hervé Gruber, and Marc Schoenauer. Genetic algorithms
for solving ATC conflicts. In Proceedings of the Ninth Conference on
Artificial Intelligence Application. IEEE, 1992.

[8] N. Durand, J.M. Alliot, and J. Noailles. Automatic aircraft conflict
resolution using genetic algorithms. In Proceedings of the Symposium
on Applied Computing, Philadelphia. ACM, 1996.

[9] Nicolas Durand and Jean-Marc Alliot. Ant colony optimization for air
traffic conflict resolution. In 8th USA/Europe Air Traffic Management
Research and Developpment Seminar, 2009.

[10] C. Vanaret, D. Gianazza, N. Durand, and J.B. Gotteland. Benchmark
for conflict resolution (regular paper). In International Conference on
Research in Air Transportation (ICRAT), Berkeley, California, 22/05/12-
25/05/12, pages 1–8, http://www.icrat.org, may 2012. ICRAT.

[11] G Mykoniatis and P Martin. Study of the acquisition of data from
aircraft operators to aid trajectory prediction calculation. Technical
report, EUROCONTROL Experimental Center, 1998.

[12] ADAPT2. aircraft data aiming at predicting the trajectory. data analysis
report. Technical report, EUROCONTROL Experimental Center, 2009.

[13] R. A. Coppenbarger. Climb trajectory prediction enhancement using
airline flight-planning information. In AIAA Guidance, Navigation, and
Control Conference, 1999.

[14] J. Lopez-Leones, M.A. Vilaplana, E. Gallo, F.A. Navarro, and C. Quere-
jeta. The aircraft intent description language: A key enabler for air-
ground synchronization in trajectory-based operations. In Proceedings
of the 26th IEEE/AIAA Digital Avionics Systems Conference. DASC,
2007.

[15] Javier Lopez Leones. Definition of an aircraft intent description
language for air traffic management applications. PhD thesis, University
of Glasgow - Department of Aerospace Sciences, 2008.

[16] Richard Alligier, David Gianazza, and Nicolas Durand. Ground-based
estimation of aircraft mass, adaptive vs. least squares method. In
10th USA/Europe Air Traffic Management Research and Developpment
Seminar, 2013.

[17] C. Schultz, D. Thipphavong, and H. Erzberger. Adaptive trajectory
prediction algorithm for climbing flights. In AIAA Guidance, Navigation,
and Control (GNC) Conference, August 2012.

[18] A.W. Warren and Y.S. Ebrahimi. Vertical path trajectory prediction for
next generation atm. In Digital Avionics Systems Conference, 1998.
Proceedings., 17th DASC. The AIAA/IEEE/SAE, volume 2, pages F11/1
–F11/8 vol.2, oct-7 nov 1998.

[19] A.W. Warren. Trajectory prediction concepts for next generation air
traffic management. In 3rd USA/Europe ATM R&D Seminar, June 2000.

[20] G. L. Slater. Adaptive improvement of aircraft climb performance for
air traffic control applications. In Proceedings of the 2002 IEEE Interna-
tional Symposium on Intelligent Control. IEEE conference publications,
October 2002.

[21] I. Lymperopoulos, J. Lygeros, and A. Lecchini Visintini. Model Based
Aircraft Trajectory Prediction during Takeoff. In AIAA Guidance,
Navigation and Control Conference and Exhibit, pages 1–12, Keystone,
Colorado, August 2006.

[22] R. Alligier, D. Gianazza, and N. Durand. Energy Rate Prediction Using
an Equivalent Thrust Setting Profile (regular paper). In International
Conference on Research in Air Transportation (ICRAT), Berkeley, Cal-
ifornia, 22/05/12-25/05/12, pages 1–7, http://www.icrat.org, may 2012.
ICRAT.

[23] R. Alligier, D. Gianazza, and N. Durand. Learning the aircraft mass
and thrust to improve the ground-based trajectory prediction of climb-
ing flights. Transportation Research Part C: Emerging Technologies,
36(0):45 – 60, 2013.

[24] A. Hadjaz, , G. Marceau, P. Savéant, and M. Schoenauer. Online learning
for ground trajectory prediction. In Proceedings of the SESAR Innovation
Days (2012). EUROCONTROL, 2012.

[25] David P Thipphavong, Charles A Schultz, Alan G Lee, and Steven H
Chan. Adaptive algorithm to improve trajectory prediction accuracy
of climbing aircraft. Journal of Guidance, Control, and Dynamics,
36(1):15–24, 2012.

[26] Young S. Park and David P. Thipphavong. Performance of an Adaptive
Trajectory Prediction Algorithm for Climbing Aircraft. In 2013 Aviation
Technology, Integration, and Operations Conference, page (on line). 08,
Aug 2013.

[27] Richard Alligier, David Gianazza, Mohammad Ghasemi Hamed, and
Nicolas Durand. Comparison of Two Ground-based Mass Estimation
Methods on Real Data (regular paper). In International Conference
on Research in Air Transportation (ICRAT), Istambul, 26/05/2014-
30/05/2014, pages 1–8, http://www.icrat.org, mai 2014. ICRAT.

[28] A. Nuic. User manual for base of aircarft data (bada) rev.3.9. Technical
report, EUROCONTROL, 2011.

[29] Vladimir N. Vapnik and Alexey Ya. Chervonenkis. The necessary and
sufficient conditions for consistency of the method of empirical risk
minimization. Pattern Recogn. Image Anal., 1(3):284–305, 1991.

[30] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-
Verlag New York, Inc., New York, NY, USA, 1995.

[31] Avrim Blum, Adam Kalai, and John Langford. Beating the hold-out:
Bounds for k-fold and progressive cross-validation. In Proceedings of
the twelfth annual conference on Computational learning theory, pages
203–208. ACM, 1999.

[32] Ron Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. pages 1137–1143. Morgan Kaufmann,
1995.

[33] C. R. Rao and H. Toutenburg. Linear Models: Least Squares and
Alternatives (Springer Series in Statistics). Springer, July 1999.

[34] Alan Miller. Subset selection in regression. CRC Press, 2002.
[35] Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased

estimation for nonorthogonal problems. Technometrics, 12(1):55–67,
1970.

[36] Ian T. Jolliffe. A note on the use of principal components in regression.
Journal of the Royal Statistical Society. Series C (Applied Statistics),
31(3):pp. 300–303, 1982.

[37] Brian D Ripley. Pattern recognition and neural networks. Cambridge
university press, 2007.

[38] Jerome H. Friedman. Stochastic gradient boosting. Computational
Statistics Data Analysis, 38(4):367 – 378, 2002.

[39] Isabelle Guyon and Andre Elisseeff. An introduction to variable and
feature selection. J. Mach. Learn. Res., 3:1157–1182, March 2003.

Richard Alligier received his Ph.D. (2014) degree
in Computer Science from the "Institut National
Polytechnique de Toulouse" (INPT), his engineer’s
degrees (IEEAC, 2010) from the french university
of civil aviation (ENAC) and his M.Sc. (2010) in
computer science from the University of Toulouse.
He is currently assistant professor at the ENAC in
Toulouse, France.

David Gianazza received his two engineer degrees
(1986, 1996) from the french university of civil
aviation (ENAC) and his M.Sc. (1996) and Ph.D.
(2004) in Computer Science from the "Institut Na-
tional Polytechnique de Toulouse" (INPT). He has
held various positions in the french civil aviation
administration, successively as an engineer in ATC
operations, technical manager, and researcher. He is
currently associate professor at the ENAC, Toulouse.

Nicolas Durand graduated from the Ecole poly-
technique de Paris in 1990 and the Ecole Nationale
de l’Aviation Civile (ENAC) in 1992. He has been
a design engineer at the Centre d’Etudes de la
Navigation Aérienne (then DSNA/DTI R&D) since
1992, holds a Ph.D. in Computer Science (1996) and
got his HDR (french equivalent of tenure) in 2004
both from the "Institut National Polytechnique de
Toulouse" (INPT). He is currently professor at the
ENAC/MAIAA lab.


	Background, mass prediction vs. estimation
	Estimation of physical model parameters
	Mass prediction vs. mass estimation
	Applying our method in actual operations

	Data used in this Study
	Data Pre-processing
	Filtering Climb Segments
	Building the Sets of Examples
	A small A320 dataset
	A larger dataset with 9 aircraft types and various altitudes

	Estimation of the mass to be predicted
	Approximation of the example trajectories when using the estimated mass 11,future

	Machine Learning
	Learning from examples
	Accuracy Estimation
	Hyperparameter Tuning

	Applying Machine Learning to our Problem
	Different Sets of Variables
	Machine Learning Algorithms

	Results and Discussion
	Prediction of the Mass 11,future
	Trajectory Prediction using the Predicted Mass
	Results using the BADA Speed Profile
	Discussion on the results

	References
	Biographies
	Richard Alligier
	David Gianazza
	Nicolas Durand


