58 research outputs found

    Odd Chain Fatty Acids; New Insights of the Relationship Between the Gut Microbiota, Dietary Intake, Biosynthesis and Glucose Intolerance

    Get PDF
    Recent findings have shown an inverse association between circulating C15:0/C17:0 fatty acids with disease risk, therefore, their origin needs to be determined to understanding their role in these pathologies. Through combinations of both animal and human intervention studies, we comprehensively investigated all possible contributions of these fatty acids from the gut-microbiota, the diet, and novel endogenous biosynthesis. Investigations included an intestinal germ-free study and a C15:0/C17:0 diet dose response study. Endogenous production was assessed through: a stearic acid infusion, phytol supplementation, and a Hacl1/^{−/−} mouse model. Two human dietary intervention studies were used to translate the results. Finally, a study comparing baseline C15:0/C17:0 with the prognosis of glucose intolerance. We found that circulating C15:0/C17:0 levels were not influenced by the gut-microbiota. The dose response study showed C15:0 had a linear response, however C17:0 was not directly correlated. The phytol supplementation only decreased C17:0. Stearic acid infusion only increased C17:0. Hacl1/^{−/−} only decreased C17:0. The glucose intolerance study showed only C17:0 correlated with prognosis. To summarise, circulating C15:0 and C17:0 are independently derived; C15:0 correlates directly with dietary intake, while C17:0 is substantially biosynthesized, therefore, they are not homologous in the aetiology of metabolic disease. Our findings emphasize the importance of the biosynthesis of C17:0 and recognizing its link with metabolic disease.The authors are grateful to the Medical Research Council for core funding (Lipid Profiling and Signalling programme grant; number UD99999906, Cambridge Lipidomics Biomarker Research Initiative; grant G0800783, MRC Human Nutrition Research PhD programme). Grant GAČR: GA15–09518S and grant Czech Science Foundation GACR: 16-06326S funded part of the gut microbiota investigation. The authors would like to acknowledge the USDA (ACNC-USDA-CRIS 6251-51000-005-03S) for funding of the dose response animal study within this manuscript. The Human study “Dairy Fat supplementation” was supported by research grants from the Hospices Civils de Lyon (Actions Incitatives); from the Programme Hospitalier de Recherche Clinique Interregional; from the Agence Nationale de la Recherche (Programme de Recherche en Nutrition Humaine and the Programme National de Recherche en Alimentation); and from the Innovation Stratégique Industrielle program of the Agence pour l’Innovation OSEO (Innovation Thérapeutique – Diabète project). K. Seyssel and M. Alligier were recipients of a doctoral fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche (France). The phytol supplementation animal study was supported by grants from the Academy of Finland (138690), the Sigrid Juselius Foundation and NordForsk under the Nordic Centres of Excellence Programme in Food, Nutrition and Health, project “Mitohealth” (070010). The NIH Grant R01-DK-18243 for funding of the canine study. HACL1 knockout mouse model was supported by grants from the Flemish “Fonds Wetenschappelijk Onderzoek” (G.0721.10N) and KU Leuven (OT/14/100)

    Ground-based prediction of aircraft climb: point-mass model vs. regression methods

    No full text
    Predicting aircraft trajectories with great accuracy is central to most operational concepts ([1], [2]) and automated tools that are expected to improve the air traffic management (ATM) in the near future

    Adipose Tissue Expansion by Overfeeding Healthy Men Alters Iron Gene Expression

    No full text
    Context: Iron overload has been associated with greater adipose tissue (AT) depots. We retrospectively studied the potential interactions between iron and AT during an experimental overfeeding in participants without obesity. Methods: Twenty-six participants (mean body mass index +/- SD, 24.7 +/- 3.1 kg/m2) underwent a 56-day overfeeding (+760 kcal/d). Serum iron biomarkers (ELISA), subcutaneous AT (SAT) gene expression, and abdominal AT distribution assessed by MRI were analyzed at the beginning and the end of the intervention. Results: Before intervention: SAT mRNA expression of the iron transporter transferrin (Tf) was positively correlated with the expression of genes related to lipogenesis (lipin 1, ACSL1) and lipid storage (SCD). SAT expression of the ferritin light chain (FTL) gene, encoding ferritin (FT), an intracellular iron storage protein, was negatively correlated to SREBF1, a gene related to lipogenesis. Serum FT (mean, 92 +/- 57 ng/mL) was negatively correlated with the expression of SAT genes linked to lipid storage (SCD, DGAT2) and to lipogenesis (SREBF1, ACSL1). After intervention: Overfeeding led to a 2.3 +/- 1.3-kg weight gain. In parallel to increased expression of lipid storage-related genes (mitoNEET, SCD, DGAT2, SREBF1), SAT Tf, SLC40A1 (encoding ferroportin 1, a membrane iron export channel) and hephaestin mRNA levels increased, whereas SAT FTL mRNA decreased, suggesting increased AT iron requirement. Serum FT decreased to 67 +/- 43 ng/mL. However, no significant associations between serum iron biomarkers and AT distribution or expansion were observed. Conclusion: In healthy men, iron metabolism gene expression in SAT is associated with lipid storage and lipogenesis genes expression and is modulated during a 56-day overfeeding diet

    Positive interaction between prebiotics and thiazolidinedione treatment on adiposity in diet-induced obese mice.

    No full text
    OBJECTIVES: To investigate whether inulin-type fructan (ITF) prebiotics could counteract the thiazolidinedione (TZD, PPARγ activator) induced-fat mass gain, without affecting its beneficial effect on glucose homeostasis, in high-fat (HF) diet fed mice. METHODS: Male C57bl6/J mice were fed a HF diet alone or supplemented with ITF prebiotics (0.2 g/day × mouse) or TZD (30 mg pioglitazone (PIO)/kg body weight × day) or both during 4 weeks. An insulin tolerance test was performed after 3 weeks of treatment. RESULTS: As expected, PIO improved glucose homeostasis and increased adiponectinaemia. Furthermore, it induced an over-expression of several PPARγ target genes in white adipose tissues. ITF prebiotics modulated the PIO-induced PPARγ activation in a tissue-dependent manner. The co-treatment with ITF prebiotics and PIO maintained the beneficial impact of TZD on glucose homeostasis and adiponectinaemia. Moreover, the combination of both treatments reduced fat mass accumulation, circulating lipids and hepatic triglyceride content, suggesting an overall improvement of metabolism. Finally, the co-treatment favored induction of white-to-brown fat conversion in subcutaneous adipose tissue, thereby leading to the development of brite adipocytes that could increase the oxidative capacity of the tissue. CONCLUSIONS: ITF prebiotics decrease adiposity and improve the metabolic response in HF fed mice treated with TZD

    Curcuma longa extract associated with white pepper lessens high fat diet-induced inflammation in subcutaneous adipose tissue

    Get PDF
    BACKGROUND: Supra-nutritional doses of curcumin, derived from the spice Curcuma longa, have been proposed as a potential treatment of inflammation and metabolic disorders related to obesity. The aim of the present study was to test whether Curcuma longa extract rich in curcumin and associated with white pepper (Curcuma-P®), at doses compatible with human use, could modulate systemic inflammation in diet-induced obese mice. We questioned the potential relevance of changes in adiposity and gut microbiota in the effect of Curcuma-P® in obesity. METHODOLOGY/PRINCIPAL FINDINGS: Mice were fed either a control diet (CT), a high fat (HF) diet or a HF diet containing Curcuma longa extract (0.1 % of curcumin in the HF diet) associated with white pepper (0.01 %) for four weeks. Curcumin has been usually combined with white pepper, which contain piperine, in order to improve its bioavailability. This combination did not significantly modify body weight gain, glycemia, insulinemia, serum lipids and intestinal inflammatory markers. Tetrahydrocurcumin, but not curcumin accumulated in the subcutaneous adipose tissue. Importantly, the co-supplementation in curcuma extract and white pepper decreased HF-induced pro-inflammatory cytokines expression in the subcutaneous adipose tissue, an effect independent of adiposity, immune cells recruitment, angiogenesis, or modulation of gut bacteria controlling inflammation. CONCLUSIONS/SIGNIFICANCE: These findings support that nutritional doses of Curcuma longa, associated with white pepper, is able to decrease inflammatory cytokines expression in the adipose tissue and this effect could be rather linked to a direct effect of bioactive metabolites reaching the adipose tissue, than from changes in the gut microbiota composition
    corecore