5 research outputs found

    The influence of macrofaunal burrow spacing and diffusive scaling on sedimentary nitrification and denitrification: An experimental simulation and model approach

    Get PDF
    The influence of burrow spacing on nitrification and denitrification was simulated experimentally using sediment plugs of different thicknesses immersed in aerated seawater reservoirs. Different plug thicknesses mimic different distances between oxygenated burrow centers and produce similar changes in aerobic–anaerobic reaction balances as a function of diffusive transport scaling. The thicknesses used were roughly equivalent to transport scales (interburrow spacing) that could be produced by burrow abundances of ~400 to 50,000 m-2, depending on burrow lumen radii (e.g., 0.05–1 cm). Following the exposure of anoxic sediment plugs to aerated water, an efficient aerobic nitrification zone was established within the first ~2–3 millimeters of sediment. At pseudo-steady state, the thinnest plug (2 mm) simulating highest burrow density, was entirely oxic and the denitrification rate nil. Denitrification was stimulated in anoxic regions of the thicker plugs (5, 10, and 20 mm) compared to the initial value in experimental sediment. Maximum nitrification rates and the highest denitrification/nitrification ratio between oxic nitrification and adjacent denitrification zones occurred for the intermediate plug thickness of 5 mm. Of the oxic/anoxic composites, the thickest plug showed the least efficient coupling between nitrification/denitrification zones (lowest denitrification/nitrification ratio). Both the thickness of the oxic layer and the total net remineralization of dissolved inorganic N varied inversely with plug thickness. A set of diffusion–reaction models was formulated assuming a range of possible nitrification kinetic functions. All model forms predicted optimal nitrification–denitrification and ammonification–denitrification coupling with relative oxic–anoxic zonation scales comparable to intermediate plug thicknesses (5–6 mm). However, none of the commonly assumed kinetic forms for nitrification could produce the observed NO-3 profiles in detail, implying that natural sediment populations of nitrifiers may be less sensitive to O2 than laboratory strains. Our experimental and model results clearly show that rates of N remineralization and the balance between stimulation/inhibition of denitrification are highly dependent on sedimentary biogenic structure and the particular geometries of irrigated burrow distributions

    Coupled anoxic nitrification/manganese reduction in marine sediments

    Get PDF
    Pore water and solid phase distributions of oxygen, manganese, and nitrogen from hemipelagic and shelf sediments sometimes indicate a close coupling between the manganese and nitrogen redox cycles. Reaction coupling must be sustained in part by biological reworking of Mn-oxide-rich surface sediments into underlying anoxic zones. Surface sediment from Long Island Sound (USA) was used in laboratory experiments to simulate such intermittent natural mixing processes and subsequent reaction evolution. Mixed sediment was incubated anoxically under either diffusively open (plugs) or closed conditions (jars). In closed anoxic incubations, pore water NO3 2 increased regularly to a maximum (up to 17 mM) after one to several days, and was subsequently depleted. Mn21 was produced simultaneously with NO3 2. NO2 2 was also clearly produced and subsequently reduced, with a formation-depletion pattern consistent with coupled nitrificationdenitrification in the anoxic sediment. Manipulative additions of Mn-oxides (5–10 mmol g21 net) demonstrated that net anoxic NO3 2 production correlated directly with initial Mn-oxide content. During initial net NO3 2 production there was no evidence for SO4 22 reduction. A direct correlation was also observed between anoxic nitrification rates and estimated sulfate reduction rates; the larger nitrification rates, the larger the eventual net sulfate reduction rates. Diffusively-open incubations using sediment plugs of four different thicknesses (2, 5, 10 and 20 mm) exposed to anoxic overlying water, also showed net production of pore water NO3 2 (;15–20 mM) despite the absence of NO3 2 in the overlying water for at least five days. In general, higher nitrate concentrations were maintained in the open relative to the closed incubations, due most likely to lower concentrations of dissolved reductants for NO3 2 in the open system. These experiments imply simultaneous coupling between the benthic nitrogen, manganese, and sulfur redox cycles, involving anoxic nitrification and sulfide oxidation to SO4 22. Anoxic nitrate production during Mn reduction indicates that nitrification and denitrification can occur simultaneously in subsurface sediments, without vertical stratification. The existence of anoxic nitrification implies new reaction pathways capable of increasing coupled sedimentary nitrificationdenitrification, particularly in bioturbated or physically mixed deposits

    Nitrogen removal in marine environments: recent findings and future research challenges

    Get PDF
    Respiratory reduction of nitrate (denitrification) is recognized as the most important process converting biologically available (fixed) nitrogen to N2. In current N cycle models, a major proportion of global marine denitrification (50–70%) is assumed to take place on the sea floor, particularly in organic rich continental margin sediments. Recent observations indicate that present conceptual views of denitrification and pathways of nitrate reduction and N2 formation are incomplete. Alternative N cycle pathways, particularly in sediments, include anaerobic ammonium oxidation to nitrite, nitrate and N2 by Mn-oxides, and anaerobic ammonium oxidation coupled to nitrite reduction and subsequent N2 mobilization. The discovery of new links and feedback mechanisms between the redox cycles of, e.g., C, N, S, Mn and Fe casts doubt on the present general understanding of the global N cycle. Recent models of the oceanic N budget indicate that total inputs are significantly smaller than estimated fixed N removal. The occurrence of alternative N reaction pathways further exacerbates the apparent imbalance as they introduce additional routes of N removal. In this contribution, we give a brief historical background of the conceptual understanding of N cycling in marine ecosystems, emphasizing pathways of aerobic and anaerobic N mineralization in marine sediments, and the implications of recently recognized metabolic pathways for N removal in marine environments

    Redox oscillation and benthic nitrogen mineralization within burrowed sediments: An experimental simulation at low frequency

    Get PDF
    Possible effects of sediment ventilation by benthic organisms on the nitrogen cycle were investigated using an experimental setup that mimicked stable or relatively low frequency oscillating redox conditions potentially found in bioturbated deposits. Three different conditions inside burrowed sediments were simulated using 2 mm thick sediment layers: 1) continuously oxic sediment exposed to oxygenated overlying bottom water (e.g., burrow walls, surface sediment), 2) continuously anoxic sediment out of reach from either O2 or NO3 − diffusion and 3) the lining/boundary of burrowstructures or sediment pockets (e.g., excavated during feeding) subject to intermittent irrigation and redox fluctuations over several day timescales. Results demonstrated that intermittent redox fluctuations allowed sustained denitrification and episodic nitrification, whereas significant denitrification and both nitrification and denitrification were absent after ~5–10 days from continuously oxidized and anoxic zones respectively. Intermittent redox oscillations enhance metabolic diversity, magnify loss of dissolved inorganic N to solution, and permit sustained coupling between ammonification, nitrification, and denitrification despite lack of a stable stratified oxic-anoxic redox structure. Even relatively low frequency redox oscillations induce greater N loss compared to sediment that is continuously exposed to oxic and anoxic conditions
    corecore