164 research outputs found

    Associations Between School Transport and Obesity by Gender, Grade, Physical Activity, Race/Ethnicity, and Economic Disadvantage

    Get PDF
    Declining rates of active transportation to school have coincided with the childhood obesity epidemic. The contribution of school transport modes to obesity among children may vary by sociodemographic characteristics. PURPOSE: To examine the prevalence of school transport modes and obesity by gender, grade, physical activity, race/ethnicity, and economic disadvantage in a representative sample of Texas school children. METHODS: Cross-sectional data on reported sociodemographic characteristics, school transport mode, and physical activity behavior were collected from the Texas School Physical Activity and Nutrition (SPAN) Survey, 2015-2016. Measured height and weight were used to calculate BMI and classify 4th, 8th, and 11th grade students by obesity status. The sampling frame had 14,976 students from 359 schools to provide weighted state-level estimates by grade. Associations were conducted between school transport modes and obesity. Interaction terms were included to test if school transport mode-obesity associations differed by gender, grade, physical activity, race/ethnicity, or economic disadvantage. RESULTS: Active and passive school transport modes were not significantly associated with obesity (p\u3e0.05). Gender, grade, physical activity, race/ethnicity, and economic disadvantage were significantly associated with obesity (p\u3c0.05). Bike to school by race/ethnicity and walk to school by grade were significantly associated with obesity (p\u3c0.05), after controlling for all other sociodemographic characteristics. Hispanic/African American students who biked to school were significantly more likely to have obesity compared to White/Other students who did not bike to school (OR=5.48, p\u3c0.05, 95% CI: 1.25, 24.00). Students in 8th grade who walked to school were significantly less likely to have obesity than 4th/11th grade students who did not walk to school (OR=0.42, p\u3c0.05, 95% CI: 0.19, 0.91). CONCLUSION: These findings suggest that associations between active school transport modes and obesity differ by sociodemographic characteristics, including race/ethnicity and grade. Population-based approaches to childhood obesity prevention may benefit from understanding disparities in opportunities for school transport modes

    Efficiently Calculating Evolutionary Tree Measures Using SAT

    Get PDF
    We develop techniques to calculate important measures in evolutionary biology by encoding to CNF formulas and using powerful SAT solvers. Comparing evolutionary trees is a necessary step in tree reconstruction algorithms, locating recombination and lateral gene transfer, and in analyzing and visualizing sets of trees. We focus on two popular comparison measures for trees: the hybridization number and the rooted subtree-prune-and-regraft (rSPR) distance. Both have recently been shown to be NP-hard, and effcient algorithms are needed to compute and approximate these measures. We encode these as a Boolean formula such that two trees have hybridization number k (or rSPR distance k) if and only if the corresponding formula is satisfiable. We use state-of-the-art SAT solvers to determine if the formula encoding the measure has a satisfying assignment. Our encoding also provides a rich source of real-world SAT instances, and we include a comparison of several recent solvers (minisat, adaptg2wsat, novelty+p, Walksat, March KS and SATzilla).Postprint (author’s final draft

    A Thermodynamically-Based Mesh Objective Work Potential Theory for Predicting Intralaminar Progressive Damage and Failure in Fiber-Reinforced Laminates

    Get PDF
    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments

    Stable Genetic Influence on Anxiety-Related Behaviours Across Middle Childhood

    Get PDF
    We examined the aetiology of anxiety symptoms in an unselected population at ages 7 and 9, a period during which anxiety disorders first begin to develop (mean age at onset is 11 years). Specifically, the aim of the study was to investigate genetic and environmental continuity and change in components of anxiety in middle childhood. Parents of over 3,500 twin pairs completed the Anxiety-Related Behaviours Questionnaire (ARBQ) when twins were 7 and 9 years old. Multivariate-longitudinal analyses were conducted to examine genetic and environmental influences on stability and change in four anxiety scales: Negative Cognition, Negative Affect, Fear and Social Anxiety. We found moderate temporal stability in all four scales from 7 to 9 years (correlations ranging from 0.45 to 0.54) and moderate heritability (average 54%). Both shared and non-shared environmental influences were modest (average 18%–28% respectively). Genetic factors (68%) explained most of the homotypic continuity in anxiety. We show that homotypic continuity of Anxiety-Related Behaviours (i.e. the continuation of one specific type of anxiety over time) was largely driven by genetic factors. In contrast, though more varied, heterotypic continuity between some traits (i.e. the change from one type of anxiety-related behaviour into another over time) was mainly due to shared-environmental factors

    Altered Error Processing following Vascular Thalamic Damage: Evidence from an Antisaccade Task

    Get PDF
    Event-related potentials (ERP) research has identified a negative deflection within about 100 to 150 ms after an erroneous response – the error-related negativity (ERN) - as a correlate of awareness-independent error processing. The short latency suggests an internal error monitoring system acting rapidly based on central information such as an efference copy signal. Studies on monkeys and humans have identified the thalamus as an important relay station for efference copy signals of ongoing saccades. The present study investigated error processing on an antisaccade task with ERPs in six patients with focal vascular damage to the thalamus and 28 control subjects. ERN amplitudes were significantly reduced in the patients, with the strongest ERN attenuation being observed in two patients with right mediodorsal and ventrolateral and bilateral ventrolateral damage, respectively. Although the number of errors was significantly higher in the thalamic lesion patients, the degree of ERN attenuation did not correlate with the error rate in the patients. The present data underline the role of the thalamus for the online monitoring of saccadic eye movements, albeit not providing unequivocal evidence in favour of an exclusive role of a particular thalamic site being involved in performance monitoring. By relaying saccade-related efference copy signals, the thalamus appears to enable fast error processing. Furthermore early error processing based on internal information may contribute to error awareness which was reduced in the patients

    Fixed Dystonia in Complex Regional Pain Syndrome: a Descriptive and Computational Modeling Approach

    Get PDF
    Background: Complex regional pain syndrome (CRPS) may occur after trauma, usually to one limb, and is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. Involvement of dysfunctional GABAergic interneurons has been suggested, however the mechanisms that underpin fixed dystonia are still unknown. We hypothesized that dystonia could be the result of aberrant proprioceptive reflex strengths of position, velocity or force feedback. Methods: We systematically characterized the pattern of dystonia in 85 CRPS-patients with dystonia according to the posture held at each joint of the affected limb. We compared the patterns with a neuromuscular computer model simulating aberrations of proprioceptive reflexes. The computer model consists of an antagonistic muscle pair with explicit contributions of the musculotendinous system and reflex pathways originating from muscle spindles and Golgi tendon organs, with time delays reflective of neural latencies. Three scenarios were simulated with the model: (i) increased reflex sensitivity (increased sensitivity of the agonistic and antagonistic reflex loops); (ii) imbalanced reflex sensitivity (increased sensitivity of the agonistic reflex loop); (iii) imbalanced reflex offset (an offset to the reflex output of the agonistic proprioceptors). Results: For the arm, fixed postures were present in 123 arms of 77 patients. The dominant pattern involved flexion of the fingers (116/123), the wrists (41/123) and elbows (38/123). For the leg, fixed postures were present in 114 legs of 77 patients. The dominant pattern was plantar flexion of the toes (55/114 legs), plantar flexion and inversion of the ankle (73/114) and flexion of the knee (55/114). Only the computer simulations of imbalanced reflex sensitivity to muscle force from Golgi tendon organs caused patterns that closely resembled the observed patient characteristics. In parallel experiments using robot manipulators we have shown that patients with dystonia were less able to adapt their force feedback strength. Conclusions: Findings derived from a neuromuscular model suggest that aberrant force feedback regulation from Golgi tendon organs involving an inhibitory interneuron may underpin the typical fixed flexion postures in CRPS patients with dystonia.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Phylogenetic Detection of Recombination with a Bayesian Prior on the Distance between Trees

    Get PDF
    Genomic regions participating in recombination events may support distinct topologies, and phylogenetic analyses should incorporate this heterogeneity. Existing phylogenetic methods for recombination detection are challenged by the enormous number of possible topologies, even for a moderate number of taxa. If, however, the detection analysis is conducted independently between each putative recombinant sequence and a set of reference parentals, potential recombinations between the recombinants are neglected. In this context, a recombination hotspot can be inferred in phylogenetic analyses if we observe several consecutive breakpoints. We developed a distance measure between unrooted topologies that closely resembles the number of recombinations. By introducing a prior distribution on these recombination distances, a Bayesian hierarchical model was devised to detect phylogenetic inconsistencies occurring due to recombinations. This model relaxes the assumption of known parental sequences, still common in HIV analysis, allowing the entire dataset to be analyzed at once. On simulated datasets with up to 16 taxa, our method correctly detected recombination breakpoints and the number of recombination events for each breakpoint. The procedure is robust to rate and transition∶transversion heterogeneities for simulations with and without recombination. This recombination distance is related to recombination hotspots. Applying this procedure to a genomic HIV-1 dataset, we found evidence for hotspots and de novo recombination

    Transcranial magnetic stimulation, synaptic plasticity and network oscillations

    Get PDF
    Transcranial magnetic stimulation (TMS) has quickly progressed from a technical curiosity to a bona-fide tool for neurological research. The impetus has been due to the promising results obtained when using TMS to uncover neural processes in normal human subjects, as well as in the treatment of intractable neurological conditions, such as stroke, chronic depression and epilepsy. The basic principle of TMS is that most neuronal axons that fall within the volume of magnetic stimulation become electrically excited, trigger action potentials and release neurotransmitter into the postsynaptic neurons. What happens afterwards remains elusive, especially in the case of repeated stimulation. Here we discuss the likelihood that certain TMS protocols produce long-term changes in cortical synapses akin to long-term potentiation and long-term depression of synaptic transmission. Beyond the synaptic effects, TMS might have consequences on other neuronal processes, such as genetic and protein regulation, and circuit-level patterns, such as network oscillations. Furthermore, TMS might have non-neuronal effects, such as changes in blood flow, which are still poorly understood
    corecore