253 research outputs found

    Spontaneous Stratification in Granular Mixtures

    Full text link
    Granular materials size segregate when exposed to external periodic perturbations such as vibrations. Moreover, mixtures of grains of different sizes spontaneously segregate in the absence of external perturbations: when a mixture is simply poured onto a pile, the large grains are more likely to be found near the base, while the small grains are more likely to be near the top. Here, we report a spontaneous phenomenon arising when we pour a mixture between two vertical plates: the mixture spontaneously stratifies into alternating layers of small and large grains whenever the large grains are rougher than the small grains. In contrast, we find only spontaneous segregation when the large grains are more rounded than the small grains. The stratification is related to the occurrence of avalanches; during each avalanche the grains comprising the avalanche spontaneously stratify into a pair of layers through a "kink" mechanism, with the small grains forming a sublayer underneath the layer of large grains.Comment: 4 pages, 6 figures, http://polymer.bu.edu/~hmakse/Home.htm

    Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary

    Get PDF
    To quantify wave attenuation by (introduced) Spartina alterniflora vegetation at an exposed macrotidal coast in the Yangtze Estuary, China, wave parameters and water depth were measured during 13 consecutive tides at nine locations ranging from 10 m seaward to 50 m landward of the low marsh edge. During this period, the incident wave height ranged from <0.1 to 1.5 m, the maximum of which is much higher than observed in other marsh areas around the world. Our measurements and calculations showed that the wave attenuation rate per unit distance was 1 to 2 magnitudes higher over the marsh than over an adjacent mudflat. Although the elevation gradient of the marsh margin was significantly higher than that of the adjacent mudflat, more than 80% of wave attenuation was ascribed to the presence of vegetation, suggesting that shoaling effects were of minor importance. On average, waves reaching the marsh were eliminated over a distance of similar to 80 m, although a marsh distance of >= 100 m was needed before the maximum height waves were fully attenuated during high tides. These attenuation distances were longer than those previously found in American salt marshes, mainly due to the macrotidal and exposed conditions at the present site. The ratio of water depth to plant height showed an inverse correlation with wave attenuation rate, indicating that plant height is a crucial factor determining the efficiency of wave attenuation. Consequently, the tall shoots of the introduced S. alterniflora makes this species much more efficient at attenuating waves than the shorter, native pioneer species in the Yangtze Estuary, and should therefore be considered as a factor in coastal management during the present era of sea-level rise and global change. We also found that wave attenuation across the salt marsh can be predicted using published models when a suitable coefficient is incorporated to account for drag, which varies in place and time due to differences in plant characteristics and abiotic conditions (i.e., bed gradient, initial water depth, and wave action).

    Chaotic dynamics of falling disks

    Full text link
    The study of the motion of flat bodies falling in a viscous medium dates back at least to Newton(1) and Maxwell(2), and is relevant to problems in meteorology(3), sedimentology(4), aerospace engineering(1) and chemical engineering(5-8). More recent theoretical studies(9-12) have emphasized the role played by deterministic chaos, although many experimental studies(1,5-8,13,14) were performed before the development of such ideas. Here we report experimental observations of the dynamics of disks falling in water/glycerol mixtures. We find four distinct types of motion, which are mapped out in a 'phase diagram'. The apparently complex behaviour can be reduced to a series of one-dimensional maps, which display a discontinuity at the crossover from periodic to chaotic motion. This discontinuity leads to an unusual intermittency transition(15), not previously observed experimentally, between the two behaviours.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62793/1/388252a0.pd

    Intra-trackway morphological variations due to substrate consistency: the El Frontal dinosaur tracksite (Lower Cretaceous, Spain).

    Get PDF
    An ichnological and sedimentological study of the El Frontal dinosaur tracksite (Early Cretaceous, Cameros basin, Soria, Spain) highlights the pronounced intra-trackway variation found in track morphologies of four theropod trackways. Photogrammetric 3D digital models revealed various and distinct intra-trackway morphotypes, which reflect changes in footprint parameters such as the pace length, the track length, depth, and height of displacement rims. Sedimentological analyses suggest that the original substrate was non-homogenous due to lateral changes in adjoining microfacies. Multidata analyses indicate that morphological differences in these deep and shallow tracks represent a part of a continuum of track morphologies and geometries produced by a gradient of substrate consistencies across the site. This implies that the large range of track morphologies at this site resulted from similar trackmakers crossing variable facies. The trackways at the El Frontal site present an exemplary case of how track morphology, and consequently potential ichnotaxa, can vary, even when produced by a single trackmaker

    Contributions of Albert Einstein to Earth Sciences: A review in Commemoration of the World Year of Physics

    Full text link
    The World Year of Physics (2005) is an international celebration to commemorate the one hundredth anniversary of Einstein's "Annus Mirabilis". The United Nations has officially declared 2005 the International Year of Physics. However, the impact of Einstein's ideas was not restricted to physics. Among numerous other disciplines, Einstein also made significant and specific contributions to Earth Sciences. His geosciences-related letters, comments, and scientific articles, are dispersed, not easily accesible and are poorly known. The present review attempts to integrate them, as a tribute to Einstein in commemoration of this centenary. These contributions can be classified into three basic areas: geodynamics, geological (planetary) catastrophism and fluvial geomorphology.Comment: 17 pages, no figures, to be published in Naturwissenschafte

    Impact of Sauropod Dinosaurs on Lagoonal Substrates in the Broome Sandstone (Lower Cretaceous), Western Australia

    Get PDF
    Existing knowledge of the tracks left by sauropod dinosaurs (loosely ‘brontosaurs’) is essentially two-dimensional, derived mainly from footprints exposed on bedding planes, but examples in the Broome Sandstone (Early Cretaceous) of Western Australia provide a complementary three-dimensional picture showing the extent to which walking sauropods could deform the ground beneath their feet. The patterns of deformation created by sauropods traversing thinly-stratified lagoonal deposits of the Broome Sandstone are unprecedented in their extent and structural complexity. The stacks of transmitted reliefs (underprints or ghost prints) beneath individual footfalls are nested into a hierarchy of deeper and more inclusive basins and troughs which eventually attain the size of minor tectonic features. Ultimately the sauropod track-makers deformed the substrate to such an extent that they remodelled the topography of the landscape they inhabited. Such patterns of substrate deformation are revealed by investigating fragmentary and eroded footprints, not by the conventional search for pristine footprints on intact bedding planes. For that reason it is not known whether similar patterns of substrate deformation might occur at sauropod track-sites elsewhere in the world

    Sustained fluvial deposition recorded in Mars’ Noachian stratigraphic record

    Get PDF
    Orbital observation has revealed a rich record of fluvial landforms on Mars, with much of this record dating 3.6–3.0 Ga. Despite widespread geomorphic evidence, few analyses of Mars’ alluvial sedimentary-stratigraphic record exist, with detailed studies of alluvium largely limited to smaller sand-bodies amenable to study in-situ by rovers. These typically metre-scale outcrop dimensions have prevented interpretation of larger scale channel-morphology and long-term basin evolution, vital for understanding the past Martian climate. Here we give an interpretation of a large sedimentary succession at Izola mensa within the NW Hellas Basin rim. The succession comprises channel and barform packages which together demonstrate that river deposition was already well established >3.7 Ga. The deposits mirror terrestrial analogues subject to low-peak discharge variation, implying that river deposition at Izola was subject to sustained, potentially perennial, fluvial flow. Such conditions would require an environment capable of maintaining large volumes of water for extensive time-periods, necessitating a precipitation-driven hydrological cycle

    Dynamics of the head of gravity currents

    Full text link
    The present work experimentally investigates the dynamics of unsteady gravity currents produced by lock-release of a saline mixture into a fresh water tank. Seven different experimental runs were performed by varying the density of the saline mixture in the lock and the bed roughness. Experiments were conducted in a Perspex flume, of horizontal bed and rectangular cross section, and recorded with a CCD camera. An image analysis technique was applied to visualize and characterize the current allowing thus the understanding of its general dynamics and, more specifically, of the current head dynamics. The temporal evolution of both head length and mass shows repeated stretching and breaking cycles: during the stretching phase, the head length and mass grow until reaching a limit, then the head becomes unstable and breaks. In the instants of break, the head aspect ratio shows a limit of 0.2 and the mass of the head is of the order of the initial mass in the lock. The average period of the herein called breaking events is seen to increase with bed roughness and the spatial periodicity of these events is seen to be approximately constant between runs. The rate of growth of the mass at the head is taken as a measure to assess entrainment and it is observed to occur at all stages of the current development. Entrainment rate at the head decreases in time suggesting this as a phenomenon ruled by local buoyancy and the similarity between runs shows independence from the initial reduced gravity and bed roughness. © 2013 Springer Science+Business Media Dordrecht
    corecore