7,383 research outputs found
Lorentz-Violating Supergravity
The standard forms of supersymmetry and supergravity are inextricably wedded
to Lorentz invariance. Here a Lorentz-violating form of supergravity is
proposed. The superpartners have exotic properties that are not possible in a
theory with exact Lorentz symmetry and microcausality. For example, the bosonic
sfermions have spin 1/2 and the fermionic gauginos have spin 1. The theory is
based on a phenomenological action that is shown to follow from a simple
microscopic and statistical picture.Comment: 15 pages; to be published in Proceedings of Beyond the Desert 2003
(Castle Ringberg, Tegernsee, Germany, 9-14 June 2003), edited by H. V.
Klapdor-Kleingrothau
Clean up energy innovation
Countries need to agree clean energy definitions and baselines to track essential uplift of research investments to decarbonize the worldâs energy supplies
An anomalous extinction law in the Cep OB3b young cluster: Evidence for dust processing during gas dispersal
© 2014. The American Astronomical Society. All rights reserved. We determine the extinction law through Cep OB3b, a young cluster of 3000 stars undergoing gas dispersal. The extinction is measured toward 76 background K giants identified with MMT/Hectospec spectra. Color excess ratios were determined toward each of the giants using V and R photometry from the literature, g, r, i, and z photometry from the Sloan Digital Sky Survey and J, H, and Ks photometry from the Two Micron All Sky Survey. These color excess ratios were then used to construct the extinction law through the dusty material associated with Cep OB3b. The extinction law through Cep OB3b is intermediate between the RV = 3.1 and RV = 5 laws commonly used for the diffuse atomic interstellar medium and dense molecular clouds, respectively. The dependence of the extinction law on line-of-sight AV is investigated and we find the extinction law becomes shallower for regions with AV > 2.5 mag. We speculate that the intermediate dust law results from dust processing during the dispersal of the molecular cloud by the cluster.Support for this work was provided by the National Science
Foundation award AST-1009564. This research has made
use of the NASA/IPAC Infrared Science Archive, which is
operated by the Jet Propulsion Laboratory, California Institute
of Technology, under contract with the National Aeronautics
and Space Administration. This publication makes
use of data products from the Two Micron All Sky Survey,
which is a joint project of the University of Massachusetts
and the Infrared Processing and Analysis Center/California
Institute of Technology, funded by the National Aeronautics
and Space Administration and the National Science Foundation
and JPL support from SAO/JPL SV4-74011. Funding for
SDSS-III has been provided by the Alfred P. Sloan Foundation,
the Participating Institutions, the National Science Foundation,
and the U.S. Department of Energy Office of Science.
The SDSS-III web site is http://www.sdss3.org/. SDSS-III is
managed by the Astrophysical Research Consortium for the Participating
Institutions of the SDSS-III Collaboration including
the University of Arizona, the Brazilian Participation Group,
Brookhaven National Laboratory, University of Cambridge,
Carnegie Mellon University, University of Florida, the French
Participation Group, the German Participation Group, Harvard
University, the Instituto de Astrofisica de Canarias, the Michigan
State/Notre Dame/JINA Participation Group, Johns Hopkins
University, Lawrence Berkeley National Laboratory, Max
Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial
Physics, New Mexico State University, New York
University, Ohio State University, Pennsylvania State University,
University of Portsmouth, Princeton University, the Spanish
Participation Group, University of Tokyo, University of
Utah, Vanderbilt University, University of Virginia, University
of Washington, and Yale University
Surface-initiated growth of copper using isonicotinic acid-functionalized aluminum oxide surfaces
Isonicotinate self-assembled monolayers (SAM) were prepared on alumina surfaces (A) using isonicotinic acid (iNA). These functionalized layers (iNA-A) were used for the seeded growth of copper films (Cu-iNA-A) by hydrazine hydrate-initiated electroless deposition. The films were characterized by scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and advancing contact angle measurements. The films are Cu0 but with surface oxidation, and show a faceted morphology, which is more textured (Rq = 460 ± 90 nm) compared to the SAM (Rq = 2.8 ± 0.5 nm). In contrast, growth of copper films by SnCl2/PdCl2 catalyzed electroless deposition, using formaldehyde (CH2O) as the reducing agent, shows a nodular morphology on top of a relatively smooth surface. No copper films are observed in the absence of the isonicotinate SAM. The binding of Cu2+ to the iNA is proposed to facilitate reduction to Cu0 and create the seed for subsequent growth. The films show good adhesion to the functionalized surface
Extracting causal rules from spatio-temporal data
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23374-1_2This paper is concerned with the problem of detecting causality in spatiotemporal data. In contrast to most previous work on causality, we adopt a logical rather than a probabilistic approach. By defining the logical form of the desired causal rules, the algorithm developed in this paper searches for instances of rules of that form that explain as fully as possible the observations found in a data set. Experiments with synthetic data, where the underlying causal rules are known, show that in many cases the algorithm is able to retrieve close approximations to the rules that generated the data. However, experiments with real data concerning the movement of fish in a large Australian river system reveal significant practical limitations, primarily as a consequence of the coarse granularity of such movement data. In response, instead of focusing on strict causation (where an environmental event initiates a movement event), further experiments focused on perpetuation (where environmental conditions are the drivers of ongoing processes of movement). After retasking to search for a different logical form of rules compatible with perpetuation, our algorithm was able to identify perpetuation rules that explain a significant proportion of the fish movements. For example, approximately one fifth of the detected long-range movements of fish over a period of six years were accounted for by 26 rules taking account of variations in water-level alone.EPSRCAustralian Research Council (ARC) under the Discovery Projects Schem
A closer look at chaotic advection in the stratosphere: part II: statistical diagnostics
Statistical diagnostics of mixing and transport are computed for a numerical model of forced shallow-water flow on the sphere and a middle-atmosphere general circulation model. In particular, particle dispersion statistics, transport fluxes, Liapunov exponents (probability density functions and ensemble averages), and tracer concentration statistics are considered. It is shown that the behavior of the diagnostics is in accord with that of kinematic chaotic advection models so long as stochasticity is sufficiently weak. Comparisons with random-strain theory are made
Difficult at dusk? Illuminating the debate on cricket ball visibility
Objectives: Investigate the visibility of new and old red, white and pink cricket balls under lighting and background conditions experienced during a dayânight cricket match. Design: We modelled the luminance contrast signals available for a typical observer for a ball against backgrounds in a professional cricket ground, at different times of day. Methods: Spectral reflectance (light reflected as a function of wavelength) was derived from laboratory measurements of new and old red, white and pink balls. We also gathered spectral measurements from backgrounds (pitch, grass, sightscreens, crowd, sky) and spectral illuminance during a dayânight match (natural afternoon light, through dusk to night under floodlights) from Lord's Cricket Ground (London, UK). The luminance contrast of the ball relative to the background was calculated for each combination of ball, time of day, and background surface. Results: Old red and old pink balls may offer little or no contrast against the grass, pitch and crowd. New pink balls can also be of low contrast against the crowd at dusk, as can pink and white balls (of any age) against the sky at dusk. Conclusions: Reports of difficulties with visibility of the pink ball are supported by our data. However, our modelling also shows that difficulties with visibility may also be expected under certain circumstances for red and white balls. The variable conditions in a cricket ground and the changing colour of an ageing ball make maintaining good visibility of the ball a challenge when playing dayânight matches
An energy and resource efficient alkaline flocculation and sedimentation process for harvesting of Chromochloris zofingiensis biomass
Harvesting microalgal cultures is often energetically intensive and costly. To improve efficiencies, a two-step
harvesting method utilising alkaline flocculation and sedimentation to pre-concentrate cultures can be used prior
to centrifugation. When applied to the microalga Chromochloris zofingiensis, high rates of sedimentation (> 90%)
were found at low concentrations of base (< 10 mM), with the addition of magnesium to the media (via NaOH/
MgSO4 or Ca(OH)2/Mg(OH)2) to form Mg(OH)2. The process was scaled to 180 L, where sedimentation was as
efficient as that achieved at bench scale. Characterisation of the harvested biomass showed comparable comïżœposition (following neutralisation of pH) to biomass recovered solely by centrifugation. The alternative two-step
processes were assessed for environmental impacts and cost, which indicated that a two-step harvesting genïżœerally performs better than centrifugation alone, but that the locally available electricity source is a critical
parameter for optimal solutio
Signal Propagation in Feedforward Neuronal Networks with Unreliable Synapses
In this paper, we systematically investigate both the synfire propagation and
firing rate propagation in feedforward neuronal network coupled in an
all-to-all fashion. In contrast to most earlier work, where only reliable
synaptic connections are considered, we mainly examine the effects of
unreliable synapses on both types of neural activity propagation in this work.
We first study networks composed of purely excitatory neurons. Our results show
that both the successful transmission probability and excitatory synaptic
strength largely influence the propagation of these two types of neural
activities, and better tuning of these synaptic parameters makes the considered
network support stable signal propagation. It is also found that noise has
significant but different impacts on these two types of propagation. The
additive Gaussian white noise has the tendency to reduce the precision of the
synfire activity, whereas noise with appropriate intensity can enhance the
performance of firing rate propagation. Further simulations indicate that the
propagation dynamics of the considered neuronal network is not simply
determined by the average amount of received neurotransmitter for each neuron
in a time instant, but also largely influenced by the stochastic effect of
neurotransmitter release. Second, we compare our results with those obtained in
corresponding feedforward neuronal networks connected with reliable synapses
but in a random coupling fashion. We confirm that some differences can be
observed in these two different feedforward neuronal network models. Finally,
we study the signal propagation in feedforward neuronal networks consisting of
both excitatory and inhibitory neurons, and demonstrate that inhibition also
plays an important role in signal propagation in the considered networks.Comment: 33pages, 16 figures; Journal of Computational Neuroscience
(published
The development of path integration: combining estimations of distance and heading
Efficient daily navigation is underpinned by path integration, the mechanism by which we use self-movement information to update our position in space. This process is well-understood in adulthood, but there has been relatively little study of path integration in childhood, leading to an underrepresentation in accounts of navigational development. Previous research has shown that calculation of distance and heading both tend to be less accurate in children as they are in adults, although there have been no studies of the combined calculation of distance and heading that typifies naturalistic path integration. In the present study 5-year-olds and 7-year-olds took part in a triangle-completion task, where they were required to return to the startpoint of a multi-element path using only idiothetic information. Performance was compared to a sample of adult participants, who were found to be more accurate than children on measures of landing error, heading error, and distance error. 7-year-olds were significantly more accurate than 5-year-olds on measures of landing error and heading error, although the difference between groups was much smaller for distance error. All measures were reliably correlated with age, demonstrating a clear development of path integration abilities within the age range tested. Taken together, these data make a strong case for the inclusion of path integration within developmental models of spatial navigational processing
- âŠ