2,312 research outputs found

    Subdynamic asymptotic behavior of microfluidic valves

    Get PDF
    Decreasing the Reynolds number of microfluidic no-moving-part flow control valves considerably below the usual operating range leads to a distinct “subdynamic” regime of viscosity- dominated flow, usually entered through a clearly defined transition. In this regime, the dynamic effects on which the operation of large-scale no-moving-part fluidic valves is based, cease to be useful, but fluid may be driven through the valve (and any connected load) by an applied pressure difference, maintained by an external pressure regulator. Reynolds number ceases to characterize the valve operation, but the driving pressure effect is usefully characterized by a newly introduced dimensionless number and it is this parameter which determines the valve behavior. This summary paper presents information about the subdynamic regime using data (otherwise difficult to access) obtained for several recently developed flow control valves. The purely subdynamic regime is an extreme. Most present-day microfluidic valves are operated at higher Re, but the paper shows that the laws governing subdynamic flows provide relations useful as an asymptotic reference

    Do trophic subsidies affect the outcome of introductions of a non-native freshwater fish?

    Get PDF
    Understanding how environmental variables and human disturbances influence the outcomes of introductions of non-native freshwater fish is integral to their risk management. This can be complex in freshwater ecosystems that receive subsidies that increase food availability, as these may influence the outcome of introductions through promoting the survival, reproduction and establishment of the introduced propagules through increasing their access to food resources. We determined how natural and/or artificial trophic subsidies affected the reproduction and establishment of the introduced topmouth gudgeon (Pseudorasbora parva) in replicated pond mesocosms. The mesocosms all started with eight mature fish and were run for 100 days during their reproductive season. The subsidies consisted of natural terrestrial prey and/or fishmeal pellets (a common trophic subsidy that can be significant in systems that are used as sport fisheries or for aquaculture). After 100 days, fish in the natural subsidy ponds showed minimal growth and very low reproductive output. Analysis of δC and δN indicated that their progeny, 0+ fish produced in the ponds, exploited the terrestrial prey. By contrast, in ponds where pellets were added, mineral nutrient availability and primary production were significantly increased, and the mature fish fed mainly on the aquatic resources. The increased productivity of the ponds significantly increased fish growth and fitness, resulting in high numbers of 0+ individuals that did feed on the pellets. Thus, subsidies that can increase both primary production and food resources (such as pelletised fishmeal) can significantly influence the ability of colonists to establish a population rapidly. Management efforts to minimise the risk of introductions should thus consider the role of these types of allochthonous subsidies. © 2013 The Authors. Freshwater Biology published by John Wiley & Sons Ltd

    The Growth of Black Holes and Bulges at the Cores of Cooling Flows

    Get PDF
    Central cluster galaxies (cDs) in cooling flows are growing rapidly through gas accretion and star formation. At the same time, AGN outbursts fueled by accretion onto supermassive black holes are generating X-ray cavity systems and driving outflows that exceed those in powerful quasars. We show that the resulting bulge and black hole growth follows a trend that is roughly consistent with the slope of the local (Magorrian) relation between bulge and black hole mass for nearby quiescent ellipticals. However, a large scatter suggests that cD bulges and black holes do not always grow in lock-step. New measurements made with XMM, Chandra, and FUSE of the condensation rates in cooling flows are now approaching or are comparable to the star formation rates, alleviating the need for an invisible sink of cold matter. We show that the remaining radiation losses can be offset by AGN outbursts in more than half of the systems in our sample, indicating that the level of cooling and star formation is regulated by AGN feedback.Comment: 3 pages, 4 figures, to appear in the proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies," edited by H. Boehringer, P. Schuecker, G. W. Pratt, and A. Finogueno

    Development of a microfluidic unit for sequencing fluid samples for composition analysis

    Get PDF
    A microfluidic sample-sequencing unit was developed as a part of a high-throughput catalyst screening facility. It may find applications wherever a fluid is to be selected for analysis from any one of several sources, such as microreactors operating in parallel. The novel feature is that the key components are fluidic valves having no moving parts and operating at very low sample flow Reynolds numbers, typically below 100. The inertial effects utilized in conventional no-moving-part fluidics are nearly absent; instead, the flows are pressure-driven. Switching between input channels is by high-Reynolds-number control flows, the jet pumping effect of which simultaneously cleans the downstream cavities to prevent crosscontamination between the samples. In the configuration discussed here, the integrated circuit containing an array of 16 valves is etched into an 84mm diameter stainless steel foil. This is clamped into a massive assembly containing 16 mini-reactors operated at up to 400C and 4 MPa. This paper describes the design basis and experience with prototypes. Results of CFD analysis, with scrutiny of some discrepancies when compared with flow visualization, is included

    Back-flow ripples in troughs downstream of unit bars: Formation, preservation and value for interpreting flow conditions

    Get PDF
    Back-flow ripples are bedforms created within the lee-side eddy of a larger bedform with migration directions opposed or oblique to that of the host bedform. In the flume experiments described in this article, back-flow ripples formed in the trough downstream of a unit bar and changed with mean flow velocity; varying from small incipient back-flow ripples at low velocities, to well-formed back-flow ripples with greater velocity, to rapidly migrating transient back-flow ripples formed at the greatest velocities tested. In these experiments back-flow ripples formed at much lower mean back-flow velocities than predicted from previously published descriptions. This lower threshold mean back-flow velocity is attributed to the pattern of velocity variation within the lee-side eddy of the host bedform. The back-flow velocity variations are attributed to vortex shedding from the separation zone, wake flapping and increases in the size of, and turbulent intensity within, the flow separation eddy controlled by the passage of superimposed bedforms approaching the crest of the bar. Short duration high velocity packets, whatever their cause, may form back-flow ripples if they exceed the minimum bed shear stress for ripple generation for long enough or, if much faster, may wash them out. Variation in back-flow ripple cross-lamination has been observed in the rock record and, by comparison with flume observations, the preserved back-flow ripple morphology may be useful for interpreting formative flow and sediment transport dynamics

    A Comprehensive Survey of Brane Tilings

    Get PDF
    An infinite class of 4d4d N=1\mathcal{N}=1 gauge theories can be engineered on the worldvolume of D3-branes probing toric Calabi-Yau 3-folds. This kind of setup has multiple applications, ranging from the gauge/gravity correspondence to local model building in string phenomenology. Brane tilings fully encode the gauge theories on the D3-branes and have substantially simplified their connection to the probed geometries. The purpose of this paper is to push the boundaries of computation and to produce as comprehensive a database of brane tilings as possible. We develop efficient implementations of brane tiling tools particularly suited for this search. We present the first complete classification of toric Calabi-Yau 3-folds with toric diagrams up to area 8 and the corresponding brane tilings. This classification is of interest to both physicists and mathematicians alike.Comment: 39 pages. Link to Mathematica modules provide

    INSTRUCTIONS FOR OPERATING LBL FORMALDEHYDE SAMPLER

    Full text link
    The LBL formaldehyde sampler consists of two parts: 1) a pump box and 2) a small refrigerator housing sampling bubblers. The pump box contains two pumps, a timer, a flow controller, an electrical cord, and a ten-foot piece of tubing to connect the refrigerator to the pump box. The small refrigerator contains four columns of bubbler sampling trains attached to a metal plate. Two sampling trains each are plumbed in parallel to two sampling ports on the back of the refrigerator. The two sampling lines supplied are to be attached to these ports to allow two locations to be sampled at once (usually one indoor and one outdoor). The refrigerator also contains a rack for holding bubbler tubes. In the sampling process, air is drawn through a sampling line attached to the fitting at the back of the refrigerator and into a prlmary bubbler containing a trapping solution. This trapping solution can be distilled water or an aqueous solution of some compound that reacts with formaldehyde. From this bubbler the air goes through a second bubbler containing the same trapping solution as the first bubbler. (To maintain sample integrity, all parts that the air sample contacts are made of Teflon, polypropylene, and stainless steel.) The air then goes into the third bubbler, which contains no liquid. This bubbler contains a hypodermic needle that serves as a flow-control orifice. The hypodermic needle, in conjunction with the flow controller in the pump box, ensures a constant a flow rate. The refrigerator contains four columns of these sets of three bubblers. After samples have been collected, the bubbler bottoms are detached and the contents of the first and second bubblers in each column are poured together, capped, and labeled. The use of a refrigerated primary and secondary bubbler whose contents are combined at the end of a sampling period ensures 95% collection efficiency. After the bubbler tubes are capped and labeled, they are stored either in the rack supplied in the refrigerator or in one of the styrofoam shipping boxes with some frozen blue ice. LBL has found that formaldehyde samples collected in water degrade significantly in a matter of hours if they are not kept cool, whereas refrigerated samples remain stable for as long as a month. Directions are provided for unpacking the apparatus, setting up sampling trains, performing the sampling, procedures after sampling, and shipping samples

    Can inflationary models of cosmic perturbations evade the secondary oscillation test?

    Get PDF
    We consider the consequences of an observed Cosmic Microwave Background (CMB) temperature anisotropy spectrum containing no secondary oscillations. While such a spectrum is generally considered to be a robust signature of active structure formation, we show that such a spectrum {\em can} be produced by (very unusual) inflationary models or other passive evolution models. However, we show that for all these passive models the characteristic oscillations would show up in other observable spectra. Our work shows that when CMB polarization and matter power spectra are taken into account secondary oscillations are indeed a signature of even these very exotic passive models. We construct a measure of the observability of secondary oscillations in a given experiment, and show that even with foregrounds both the MAP and \pk satellites should be able to distinguish between models with and without oscillations. Thus we conclude that inflationary and other passive models can {\em not} evade the secondary oscillation test.Comment: Final version accepted for publication in PRD. Minor improvements have been made to the discussion and new data has been included. The conclusions are unchagne

    Modulating medial prefrontal cortex activity using real-time fMRI neurofeedback: Effects on reality monitoring performance and associated functional connectivity

    Get PDF
    Neuroimaging studies have found ‘reality monitoring’, our ability to distinguish internally generated experiences from those derived from the external world, to be associated with activity in the medial prefrontal cortex (mPFC) of the brain. Here we probe the functional underpinning of this ability using real-time fMRI neurofeedback to investigate the involvement of mPFC in recollection of the source of self-generated information. Thirty-nine healthy individuals underwent neurofeedback training in a between groups study receiving either Active feedback derived from the paracingulate region of the mPFC (21 subjects) or Sham feedback based on a similar level of randomised signal (18 subjects). Compared to those in the Sham group, participants receiving Active signal showed increased mPFC activity over the course of three real-time neurofeedback training runs undertaken in a single scanning session. Analysis of resting state functional connectivity associated with changes in reality monitoring accuracy following Active neurofeedback revealed increased connectivity between dorsolateral frontal regions of the fronto-parietal network (FPN) and the mPFC region of the default mode network (DMN), together with reduced connectivity within ventral regions of the FPN itself. However, only a trend effect was observed in the interaction of the recollection of the source of Imagined information compared with recognition memory between participants receiving Active and Sham neurofeedback, pre- and post- scanning. As such, these findings demonstrate that neurofeedback can be used to modulate mPFC activity and increase cooperation between the FPN and DMN, but the effects on reality monitoring performance are less clear
    corecore