15,243 research outputs found

    Local-Aggregate Modeling for Big-Data via Distributed Optimization: Applications to Neuroimaging

    Full text link
    Technological advances have led to a proliferation of structured big data that have matrix-valued covariates. We are specifically motivated to build predictive models for multi-subject neuroimaging data based on each subject's brain imaging scans. This is an ultra-high-dimensional problem that consists of a matrix of covariates (brain locations by time points) for each subject; few methods currently exist to fit supervised models directly to this tensor data. We propose a novel modeling and algorithmic strategy to apply generalized linear models (GLMs) to this massive tensor data in which one set of variables is associated with locations. Our method begins by fitting GLMs to each location separately, and then builds an ensemble by blending information across locations through regularization with what we term an aggregating penalty. Our so called, Local-Aggregate Model, can be fit in a completely distributed manner over the locations using an Alternating Direction Method of Multipliers (ADMM) strategy, and thus greatly reduces the computational burden. Furthermore, we propose to select the appropriate model through a novel sequence of faster algorithmic solutions that is similar to regularization paths. We will demonstrate both the computational and predictive modeling advantages of our methods via simulations and an EEG classification problem.Comment: 41 pages, 5 figures and 3 table

    Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls

    Full text link
    We propose a rank-kk variant of the classical Frank-Wolfe algorithm to solve convex optimization over a trace-norm ball. Our algorithm replaces the top singular-vector computation (11-SVD) in Frank-Wolfe with a top-kk singular-vector computation (kk-SVD), which can be done by repeatedly applying 11-SVD kk times. Alternatively, our algorithm can be viewed as a rank-kk restricted version of projected gradient descent. We show that our algorithm has a linear convergence rate when the objective function is smooth and strongly convex, and the optimal solution has rank at most kk. This improves the convergence rate and the total time complexity of the Frank-Wolfe method and its variants.Comment: In NIPS 201

    Neutrino mass limits from SDSS, 2dFGRS and WMAP

    Get PDF
    We investigate whether cosmological data suggest the need for massive neutrinos. We employ galaxy power spectrum measurements from the Sloan Digital Sky Survey (SDSS) and the Two Degree Field Galaxy Redshift Survey (2dFGRS), along with cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe (WMAP) and 27 other CMB experiments. We also use the measurement of the Hubble parameter from the Hubble Space Telescope (HST) Key Project. We find the sum of the neutrino masses to be smaller than 0.75 eV at 2\sigma (1.1 eV at 3\sigma).Comment: 4 pages, 2 figures. Only unconstrained bias fit included. References adde

    Angular momentum exchange between coherent light and matter fields

    Full text link
    Full, three dimensional, time-dependent simulations are presented demonstrating the quantized transfer of angular momentum to a Bose-Einstein condensate from a laser carrying orbital angular momentum in a Laguerre-Gaussian mode. The process is described in terms of coherent Bragg scattering of atoms from a chiral optical lattice. The transfer efficiency and the angular momentum content of the output coupled vortex state are analyzed and compared with a recent experiment.Comment: 4 pages, 4 figure

    In-vivo pan/tilt endoscope with integrated light source

    Get PDF
    Endoscopic imaging is still dominated by the paradigm of pushing long sticks into small openings. This approach has a number of limitations for minimal access surgery, such as narrow angle imaging, limited workspace, counter-intuitive motions and additional incisions for the endoscpic instruments. Our intent is to go beyond this paradigm, and remotize sensors and effectors directly into the body cavity. To this end, we have developed a prototype of a novel insertable pan/tilt endoscopic camera with an integrated light source. The package has a size of 110 mm in length and 10 mm in diameter and can be inserted into the abdomen through a standard trocar and then anchored onto the abdominal wall, leaving the incision port open for access. The camera package contains three parts: an imaging module, an illumination module, and a pan/tilt motion platform. The imaging module includes a lens and CCD imaging sensor. The illumination module attaches to the imaging module and has an array of LED light sources. The pan/tilt platform provides the imaging module with pan of 120 degrees and tilt motion of 90 degrees using small servo motors. A fixing mechanism is designed to hold the device in the cavity. A standard joy stick can be used to control the motion of the camera in a natural way. The design allows for multiple camera packages to be inserted through a single incision as well

    2-Chloro-5-nitro­pyridin-4-amine

    Get PDF
    The title mol­ecule, C5H4ClN3O2, possesses mirror symmetry, with all of the atoms lying in the mirror plane. There is an intra­molecular N—H⋯O hydrogen bond involving the adjacent –NO2 and –NH2 groups. A short C—H⋯O inter­action is also observed. In the crystal, adjacent mol­ecules are linked via N—H⋯Cl and N—H⋯N hydrogen bonds, forming chains propagating along [100]

    CMB Anisotropy Induced by Cosmic Strings on Angular Scales > 15>~ 15'

    Get PDF
    We have computed an estimate of the angular power spectrum of the Cosmic Microwave Background (CMB) induced by cosmic strings on angular scales > 15>~ 15', using a numerical simulation of a cosmic string network; and decomposed this pattern into scalar, vector, and tensor parts. We find no evidence for strong acoustic oscillations in the scalar anisotropy but rather a broad peak. The anisotropies from vector modes dominate except on very small angular scales while the tensor anisotropies are sub-dominant on all angular scales. The anisotropies generated after recombination are even more important than in adiabatic models. We expect that these qualitative features are robust to the varying of cosmological parameters, a study which has not yet been done.Comment: 4 pages, 2 figure
    corecore