5,682 research outputs found

    Tropical belt width proportionately more sensitive to aerosols than greenhouse gases

    Get PDF
    The tropical belt has widened during the last several decades, and both internal variability and anthropogenic forcings have contributed. Although greenhouse gases and stratospheric ozone depletion have been implicated as primary anthropogenic drivers of tropical expansion, the possible role of other drivers remains uncertain. Here, we analyze the tropical belt width response to idealized perturbations in multiple models. Our results show that absorbing black carbon (BC) aerosol drives tropical expansion, and scattering sulfate aerosol drives contraction. BC, especially from Asia, is more efficient per unit radiative forcing than greenhouse gases in driving tropical expansion, particularly in the Northern Hemisphere. Tropical belt expansion (contraction) is associated with an increase (decrease) in extratropical static stability induced by absorbing (scattering) aerosol. Although a formal attribution is difficult, scaling the normalized expansion rates to the historical time period suggests that BC is the largest driver of the Northern Hemisphere tropical widening but with relatively large uncertainty

    Manganese-Catalyzed Electrochemical Deconstructive Chlorination of Cycloalkanols via Alkoxy Radicals

    Get PDF
    A manganese-catalyzed electrochemical deconstructive chlorination of cycloalkanols has been developed. This electrochemical method provides access to alkoxy radicals from alcohols and exhibits a broad substrate scope, with various cyclopropanols and cyclobutanols converted into synthetically useful β- and γ-chlorinated ketones (40 examples). Furthermore, the combination of recirculating flow electrochemistry and continuous inline purification was employed to access products on a gram scale

    Abnormal IgD and IgA1 O-glycosylation in hyperimmunoglobulinaemia D and periodic fever syndrome

    Get PDF
    In order to determine the glycosylation pattern for IgD, and to examine whether there are changes in the pattern of IgD and IgA1 O-glycosylation in patients with hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS) during acute febrile attacks and during periods of quiescence, serum was obtained from 20 patients with HIDS and 20 control subjects. In the HIDS group, serum was obtained either during an acute febrile episode (n = 9) or during a period of quiescence (n = 11). The O-glycosylation profiles of native and desialylated IgA1 and IgD were measured in an ELISA-type system using the lectins Helix aspersa and peanut agglutinin, which bind to alternative forms of O-glycan moieties. IgD is more heavily O-galactosylated and less O-sialylated than IgA1 in healthy subjects. HIDS is associated with more extensive O-galactosylation of IgD and a reduction in O-sialylation of both IgD and IgA1. These changes are present both during acute febrile attacks and periods of quiescence. The T cell IgD receptor is a lectin with binding affinity for the O-glycans of both IgD and IgA1. The observed changes in IgD and IgA1 O-glycosylation are likely to have a significant effect on IgD/IgA1–T cell IgD receptor interactions including basal immunoglobulin synthesis, and possibly myeloid IgD receptor-mediated cytokine release

    Improved measurements of turbulence in the hot gaseous atmospheres of nearby giant elliptical galaxies

    Get PDF
    We present significantly improved measurements of turbulent velocities in the hot gaseous haloes of nearby giant elliptical galaxies. Using deep XMM-Newton Reflection Grating Spectrometer (RGS) observations and a combination of resonance scattering and direct line broadening methods, we obtain well bounded constraints for 13 galaxies. Assuming that the turbulence is isotropic, we obtain a best-fitting mean 1D turbulent velocity of similar to 110 km s(-1). This implies a typical 3D Mach number similar to 0.45 and a typical non-thermal pressure contribution of similar to 6 per cent in the cores of nearby massive galaxies. The intrinsic scatter around these values is modest-consistent with zero, albeit with large statistical uncertainty-hinting at a common and quasi-continuous mechanism sourcing the velocity structure in these objects. Using conservative estimates of the spatial scales associated with the observed turbulent motions, we find that turbulent heating can be sufficient to offset radiative cooling in the inner regions of these galaxies (< 10 kpc, typically 2-3 kpc). The full potential of our analysis methods will be enabled by future X-ray micro-calorimeter observations

    The Evolution of X-ray Clusters of Galaxies

    Get PDF
    Considerable progress has been made over the last decade in the study of the evolutionary trends of the population of galaxy clusters in the Universe. In this review we focus on observations in the X-ray band. X-ray surveys with the ROSAT satellite, supplemented by follow-up studies with ASCA and Beppo-SAX, have allowed an assessment of the evolution of the space density of clusters out to z~1, and the evolution of the physical properties of the intra-cluster medium out to z~0.5. With the advent of Chandra and Newton-XMM, and their unprecedented sensitivity and angular resolution, these studies have been extended beyond redshift unity and have revealed the complexity of the thermodynamical structure of clusters. The properties of the intra-cluster gas are significantly affected by non-gravitational processes including star formation and Active Galactic Nucleus (AGN) activity. Convincing evidence has emerged for modest evolution of both the bulk of the X-ray cluster population and their thermodynamical properties since redshift unity. Such an observational scenario is consistent with hierarchical models of structure formation in a flat low density universe with Omega_m=0.3 and sigma_8=0.7-0.8 for the normalization of the power spectrum. Basic methodologies for construction of X-ray-selected cluster samples are reviewed and implications of cluster evolution for cosmological models are discussed.Comment: 40 pages, 15 figures. Full resolution figures can be downloaded from http://www.eso.org/~prosati/ARAA

    Molecular Genetics of T Cell Development

    Get PDF
    T cell development is guided by a complex set of transcription factors that act recursively, in different combinations, at each of the developmental choice points from T-lineage specification to peripheral T cell specialization. This review describes the modes of action of the major T-lineage-defining transcription factors and the signal pathways that activate them during intrathymic differentiation from pluripotent precursors. Roles of Notch and its effector RBPSuh (CSL), GATA-3, E2A/HEB and Id proteins, c-Myb, TCF-1, and members of the Runx, Ets, and Ikaros families are critical. Less known transcription factors that are newly recognized as being required for T cell development at particular checkpoints are also described. The transcriptional regulation of T cell development is contrasted with that of B cell development, in terms of their different degrees of overlap with the stem-cell program and the different roles of key transcription factors in gene regulatory networks leading to lineage commitment

    Do the mutations of C1GALT1C1 gene play important roles in the genetic susceptibility to Chinese IgA nephropathy?

    Get PDF
    Background: The deficiency of beta 1,3 galactose in hinge region of IgA1 molecule played a pivotal role in pathogenesis of IgA nephropathy (IgAN). Cosmc, encoded by C1GALT1C1 gene, was indispensable to beta 1,3 galactosylation of IgA1. We designed a serial study to investigate the relationship between the mutations of C1GALT1C1 gene and the genetic susceptibility to IgAN. Methods: Nine hundred and thirty-eight subjects, including 661 patients with IgAN and 277 healthy controls were enrolled in the study. Firstly, single nucleotide polymorphisms (SNPs) in the promoter region of C1GALT1C1 gene were screened. Then the c.-347-190G&gt; A was analyzed by PCR-restriction fragment length polymorphism (PCR-RFLP) for further case-control association analysis. Secondly the somatic mutations of DNAs from peripheral blood B lymphocytes were detected in 15 patients and 7 normal controls. Results: No significant association was observed between the different alleles or genotypes of c.347-190G&gt;A and IgAN. The patients with different genotypes of C1GALT1C1 gene did not significantly associate with clinical manifestations, including hematuria, proteinuria, and serum creatinine of patients with IgAN. There was no somatic mutation detected in total 202 clones of 22 individuals. Conclusion: The c.-347-190G&gt;A polymorphism and the somatic mutation of encoding region of C1GALT1C1 gene were not significantly related to the genetic susceptibility to IgAN in Northern Chinese population.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000271285100001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Genetics &amp; HereditySCI(E)PubMed1ARTICLE1011

    The Road to Quantum Computational Supremacy

    Full text link
    We present an idiosyncratic view of the race for quantum computational supremacy. Google's approach and IBM challenge are examined. An unexpected side-effect of the race is the significant progress in designing fast classical algorithms. Quantum supremacy, if achieved, won't make classical computing obsolete.Comment: 15 pages, 1 figur
    corecore