1,663 research outputs found

    Active or Passive Laryngeal Closure

    Get PDF

    Durrington Walls to West Amesbury by way of Stonehenge: a major transformation of the Holocene landscape

    Get PDF
    A new sequence of Holocene landscape change has been discovered through an investigation of sediment sequences, palaeosols, pollen and molluscan data discovered during the Stonehenge Riverside Project. The early post-glacial vegetational succession in the Avon valley at Durrington Walls was apparently slow and partial, with intermittent woodland modification and the opening-up of this landscape in the later Mesolithic and earlier Neolithic, though a strong element of pine lingered into the third millennium BC. There appears to have been a major hiatus around 2900 cal BC, coincident with the beginnings of demonstrable human activities at Durrington Walls, but slightly after activity started at Stonehenge. This was reflected in episodic increases in channel sedimentation and tree and shrub clearance, leading to a more open downland, with greater indications of anthropogenic activity, and an increasingly wet floodplain with sedges and alder along the river’s edge. Nonetheless, a localized woodland cover remained in the vicinity of DurringtonWalls throughout the third and second millennia BC, perhaps on the higher parts of the downs, while stable grassland, with rendzina soils, predominated on the downland slopes, and alder–hazel carr woodland and sedges continued to fringe the wet floodplain. This evidence is strongly indicative of a stable and managed landscape in Neolithic and Bronze Age times. It is not until c 800–500 cal BC that this landscape was completely cleared, except for the marshy-sedge fringe of the floodplain, and that colluvial sedimentation began in earnest associated with increased arable agriculture, a situation that continued through Roman and historic times

    Heart rate variability during high-speed treadmill exercise and recovery in Thoroughbred racehorses presented for poor performance

    Get PDF
    Background: Heart rate variability (HRV) analysis measures the inter-beat interval variation of successive cardiac cycles. Measurement of these indices has been used to assess cardiac autonomic modulation and for arrhythmia identification in exercising horses.Objectives: To report HRV indices during submaximal exercise, strenuous exercise and recovery, and explore relationships with clinical conditions (arrhythmias, lameness, equine gastric ulcer syndrome (EGUS), lower airway inflammation and upper respiratory tract obstructions (URTO) in Thoroughbred (TB) racehorses.Study Design: Retrospective, observational cross-sectional study.Methods: One hundred and eighty Thoroughbred horses underwent a treadmill exercise test with simultaneous electrocardiographic (ECG) recording. Time-domain HRV indices (standard deviation of the R-R interval (SDRR); root mean square of successive differences (RMSSD)) were derived for submaximal and strenuous exercise and recovery segments. Clinical conditions (arrhythmia (during each phase of exercise), lameness, EGUS, lower airway inflammation and URTO) were assigned to binary categories for statistical analysis. Relationships between selected HRV indices and the clinical conditions were explored using linear regression models. Results: During submaximal exercise, lameness was associated with decreased logRMSSD (B= -0.19 95% CI -0.31 to -0.06, P= 0.006) and arrhythmia was associated with increased logRMSSD (B= 0.31 95% CI 0.01-.608, P=0.04). During strenuous exercise, arrhythmia was associated with increased HRV indices (logSDRR B= 0.51 95% CI 0.40-0.62, PMain Limitations: The main limitations of this retrospective study were that not every horse had the full range of clinical testing, therefore some horses may have had undetected abnormalities. Conclusions: The presence of arrhythmia increased HRV in both phases of exercise and recovery. Lameness decreased HRV during submaximal exercise

    The gammaretroviral p12 protein has multiple domains that function during the early stages of replication.

    Get PDF
    BACKGROUND: The Moloney murine leukaemia virus (Mo-MLV) gag gene encodes three main structural proteins, matrix, capsid and nucleocapsid and a protein called p12. In addition to its role during the late stages of infection, p12 has an essential, but undefined, function during early post-entry events. As these stages of retroviral infection remain poorly understood, we set out to investigate the function of p12. RESULTS: Examination of the infectivity of Mo-MLV virus-like particles containing a mixture of wild type and mutant p12 revealed that the N- and C-terminal regions of p12 are sequentially acting domains, both required for p12 function, and that the N-terminal activity precedes the C-terminal activity in the viral life cycle. By creating a panel of p12 mutants in other gammaretroviruses, we showed that these domains are conserved in this retroviral genus. We also undertook a detailed mutational analysis of each domain, identifying residues essential for function. These data show that different regions of the N-terminal domain are necessary for infectivity in different gammaretroviruses, in stark contrast to the C-terminal domain where the same region is essential for all viruses. Moreover, chimeras between the p12 proteins of Mo-MLV and gibbon ape leukaemia virus revealed that the C-terminal domains are interchangeable whereas the N-terminal domains are not. Finally, we identified potential functions for each domain. We observed that particles with defects in the N-terminus of p12 were unable to abrogate restriction factors, implying that their cores were impaired. We further showed that defects in the C-terminal domain of p12 could be overcome by introducing a chromatin binding motif into the protein. CONCLUSIONS: Based on these data, we propose a model for p12 function where the N-terminus of p12 interacts with, and stabilizes, the viral core, allowing the C-terminus of p12 to tether the preintegration complex to host chromatin during mitosis, facilitating integration

    Assessment of Selected Reef Sites in Northern and South-Central Belize, Including Recovery from Bleaching and Hurricane Disturbances (Stony Corals, Algae and Fish)

    Get PDF
    The condition of coral. algal. and fish populations in fore reefs. patch reefs, and coral reef ridges was investigated at 13 sites along the northern and south-central Belize barrier reef during May 1999, documenting effects of the 1998 warming episode and Hurricane Mitch. We found high percentages of partial, or even complete, colony mortality of major reef-builders (Acropora palmata, the Montastraea annuluris species complex and Agaricia tenuifolia) that were rarely censused as recruits. A. tenuifolia, formerly a space-dominant coral in reef ridges, had incurred nearly 100% mortality after bleaching. Nearly 45% of the M. annurluris complex was still discolored (50% had been bleached in January 1999) on some south-central patch reefs where the total (recent + old) partial mortality exceeded 60% of colony surfaces. Although turf algae dominated patch reefs and coral reef ridges, macroalgae were quite prevalent representing \u3e30% cover at six sites. Parrotfish densities exceeded surgeontishes at most sites (11/13). Consistent patterns of lower partial-colony mortality of stony corals and greater fish densities and sizes near and within the Hol Chan Marine Reserve highlight the ecological benefits of protected areas for the maintenance of reef corals and attendant fish populations

    Amplification Free Detection of SARS-CoV-2 Using Multi-valent Binding

    Get PDF
    [Image: see text] We present the development of electrochemical impedance spectroscopy (EIS)-based biosensors for sensitive detection of SARS-CoV-2 RNA using multi-valent binding. By increasing the number of probe–target binding events per target molecule, multi-valent binding is a viable strategy for improving the biosensor performance. As EIS can provide sensitive and label-free measurements of nucleic acid targets during probe–target hybridization, we used multi-valent binding to build EIS biosensors for targeting SARS-CoV-2 RNA. For developing the biosensor, we explored two different approaches including probe combinations that individually bind in a single-valent fashion and the probes that bind in a multi-valent manner on their own. While we found excellent biosensor performance using probe combinations, we also discovered unexpected signal suppression. We explained the signal suppression theoretically using inter- and intra-probe hybridizations which confirmed our experimental findings. With our best probe combination, we achieved a LOD of 182 copies/μL (303 aM) of SARS-CoV-2 RNA and used these for successful evaluation of patient samples for COVID-19 diagnostics. We were also able to show the concept of multi-valent binding with shorter probes in the second approach. Here, a 13-nt-long probe has shown the best performance during SARS-CoV-2 RNA binding. Therefore, multi-valent binding approaches using EIS have high utility for direct detection of nucleic acid targets and for point-of-care diagnostics
    corecore