1,186 research outputs found

    New South Wales Vegetation classification and Assessment: Part 3, plant communities of the NSW Brigalow Belt South, Nandewar and west New England Bioregions and update of NSW Western Plains and South-western Slopes plant communities, Version 3 of the NSWVCA database

    Get PDF
    This fourth paper in the NSW Vegetation Classification and Assessment series covers the Brigalow Belt South-/1(BBS) and Nandewar (NAN) Bioregions and the western half of the New England Bioregion (NET), an area of 9.3 million hectares being 11.6% of NSW. It completes the NSWVCA coverage for the Border Rivers-Gwydir and Namoi CMA areas and records plant communities in the Central West and Hunter–Central Rivers CMA areas. In total, 585 plant communities are now classified in the NSWVCA covering 11.5 of the 18 Bioregions in NSW (78% of the State). Of these 226 communities are in the NSW Western Plains and 416 are in the NSW Western Slopes. 315 plant communities are classified in the BBS, NAN and west-NET Bioregions including 267 new descriptions since Version 2 was published in 2008. Descriptions of the 315 communities are provided in a 919 page report on the DVD accompanying this paper along with updated reports on other inland NSW bioregions and nine Catchment Management Authority areas fully or partly classified in the NSWVCA to date. A read-only version of Version 3 of the NSWVCA database is on the DVD for use on personal computers. A feature of the BBS and NAN Bioregions is the array of ironbark and bloodwood Eucalyptusdominated shrubby woodlands on sandstone and acid volcanic substrates extending from Dubbo to Queensland. This includes iconic natural areas such as Warrumbungle and Mount Kaputar National Parks and the 500,000 ha Pilliga Scrub forests. Large expanses of basalt-derived soils support grassy box woodland and native grasslands including those on the Liverpool Plains; near Moree; and around Inverell, most of which are cleared and threatened. Wetlands occur on sodic soils near Yetman and in large clay gilgais in the Pilliga region. Sedgelands are rare but occupy impeded creeks. Aeolian lunettes occur at Narran Lake and near Gilgandra. Areas of deep sand contain Allocasuarina, eucalypt mallee and Melaleuca uncinata heath. Tall grassy or ferny open forests occur on mountain ranges above 1000m elevation in the New England Bioregion and on the Liverpool Range while grassy box woodlands occupy lower elevations with lower rainfall and higher temperatures. The vegetation classification and assessment is based on over 100 published and unpublished vegetation surveys and map unit descriptions, expert advice, extra plot sampling and data analysis and over 25 000 km of road traverse with field checking at 805 sites. Key sources of data included floristic analyses produced in western regional forest assessments in the BBS and NAN Bioregions, floristic analyses in over 60 surveys of conservation reserves and analysis of plot data in the western NET Bioregion and covering parts of the Namoi and Border Rivers- Gwydir CMA areas. Approximately 60% of the woody native vegetation in the study area has been cleared resulting in large areas of “derived” native grasslands. As of June 2010, 7% of the area was in 136 protected areas and 127 of the 315 plant communities were assessed to be adequately protected in reserves. Using the NSWVCA database threat criteria, 15 plant communities were assessed as being Critically Endangered, 59 Endangered, 60 Vulnerable, 99 Near Threatened and 82 Least Concern. 61 of these communities are assessed as part of NSW or Commonwealth-listed Threatened Ecological Communities. Current threats include expanding dryland and irrigated cropping on alluvial plains, floodplains and gently undulating topography at lower elevations; over-grazing of steep hills; altered water tables and flooding regimes; localized mining; and the spread of exotic species, notably Coolatai Grass (Hyparrhenia hirta)

    The impact of distance and a shifting temperature gradient on genetic connectivity across a heterogeneous landscape

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inter-population distance and differences in breeding times are barriers to reproduction that can contribute to genotypic differentiation between populations. Temporal changes in environmental conditions and local selective processes can further contribute to the establishment of reproductive barriers. <it>Telopea speciosissima </it>(Proteaceae) is an excellent subject for studying the effect of geographic, edaphic and phenological heterogeneity on genotypic differentiation because previous studies show that these factors are correlated with morphological variation. Molecular, morphological and environmental datasets were combined to characterise the relative influence of these factors on inter-population differentiation, and Bayesian analyses were used to investigate current levels of admixture between differentiated genomes.</p> <p>Results</p> <p>A landscape genetic approach involving molecular and morphological analyses identified three endpoints of differentiated population groups: coastal, upland and southern. The southern populations, isolated from the other populations by an edaphic barrier, show low migration and no evidence of admixture with other populations. Amongst the northern populations, coastal and upland populations are connected along a skewed altitudinal gradient by genetically intermediate populations. The strong association between temperature and flowering time in <it>Telopea speciosissima </it>was shown to maintain a temporally unstable reproductive barrier between coastal and upland populations.</p> <p>Conclusions</p> <p>Substrate-mediated allopatry appears to be responsible for long-term genetic isolation of the southern populations. However, the temperature-dependent reproductive barrier between upland and coastal populations bears the genetic signature of temporal adjustments. The extreme climatic events of the last glacial maximum are likely to have caused more complete allochronic isolation between upland and coastal populations, as well as exerting increased selective pressure upon local genomes. However, at intermediate altitudes, current climatic conditions allow for the incorporation of alleles from previously distinct genomes, generating new, intermediate genomic assemblages and possibly increasing overall adaptive potential.</p

    Saltmarsh of the Parramatta River-Sydney Harbour: determination of cover and species composition including comparison of API and pedestrian survey

    No full text
    In 2004 coastal saltmarsh was listed as an Endangered Ecological Community under the New South Wales Threatened Species Conservation Act, but more information on the ecology of saltmarsh species as well as accurate maps of the cover of saltmarsh are needed. Large scale maps produced in the early 1980s and the mid 2000s were based on air photo interpretation with follow-up field checks, but to determine the ability of air photos to detect small patches of coastal saltmarsh, a pedestrian survey along the foreshore of the Parramatta River-Sydney Harbour estuary (33° 53’S; 151° 13’E) was commissioned. Ground-truth activity was partitioned into three levels of intensity. At the greatest level of intensity, many small patches obscured in the air photos by (mainly mangrove) canopy cover were resolved and joined to reveal larger patches of saltmarsh. Compared to the earlier maps these areas are considered to increase the total area of existing saltmarsh, but they also may in fact be areas of saltmarsh that have been recently invaded by mangroves, and ultimately, through shading and competition result in the loss of the saltmarsh species at these sites. Another 609 patches not seen on the air photos were located. The pedestrian survey located 757 saltmarsh patches (70% of these were less than 100 m2 in area) with a total area of 37.3 ha. Parramatta River, relative to the Lane Cove River, Middle Harbour Creek and Sydney Harbour, supports the most numerous and extensive patches: 461 patches (61% by number), 29 ha (78% by area). Most of the patches of saltmarsh (60%), as well as most of their area (76%), are located in the most upstream Riverine Channel geomorphic zone of the Parramatta River, followed by downstream zones Fluvial Delta and Central Mud Basin. The fewest patches (14) and smallest area (0.04ha) were in the Marine Tidal Delta. The ‘conservation ‘sensitive’ species as well as some of the weed species also appeared to be restricted to the upper and middle parts of the estuary. API is useful for broad assessments of estuarine saltmarsh, but pedestrian survey is needed to provide the finer scale detail necessary to locate small patches and to identify species composition especially for rare or weed species

    The nuclear spectrum of the radio galaxy NGC 5128 (Centaurus A)

    Full text link
    We present near-infrared spectra of the nuclear disk in the nearby radio galaxy NGC 5128 (Centaurus A). On the basis of the observed strengths of the [S III] 0.9532um and [Fe II] 1.2567um lines, we classify NGC 5128 as a LINER. Modeling of the strengths of these and additional lines suggests that the nuclear region is powered by shocks rather than photoionization.Comment: 12 pages including 2 figures, accepted by ApJ Letter

    Gravity Spy: Integrating Advanced LIGO Detector Characterization, Machine Learning, and Citizen Science

    Get PDF
    (abridged for arXiv) With the first direct detection of gravitational waves, the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) has initiated a new field of astronomy by providing an alternate means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches, which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual classifier. The resulting classification and characterization should help LIGO scientists to identify causes of glitches and subsequently eliminate them from the data or the detector entirely, thereby improving the rate and accuracy of gravitational-wave observations. We demonstrate these methods using a small subset of data from LIGO's first observing run.Comment: 27 pages, 8 figures, 1 tabl

    Who am I? Autobiographical retrieval improves access to self-concepts

    Get PDF
    It is considered that an individual's current self-concept plays a crucial role in guiding the retrieval of autobiographical memory. Using a novel fluency paradigm, the present research examined whether or not the reverse is also true, that is, does memory retrieval influence the description of the conceptual self? Specifically, this study examined the effect of prior autobiographical reverie on the subsequent retrieval of stored self-concepts. Participants wrote a description of a personally relevant memory or a control topic (of no relevance to the self), following which they had 60 seconds to generate as many self-defining statements as possible, each beginning with I am. Participants engaging in autobiographical retrieval generated significantly more statements than those in the control condition, suggesting that autobiographical retrieval increased access to self-concepts. Type of statement also varied according to group. Participants in the autobiographical memory condition were more likely to conceptualise themselves in relation to their psychological traits, and this was replicated in a second experiment conducted online. Findings support the idea that self and episodic memory are highly related constructs, and are discussed in relation to implications for individuals with autobiographical memory deficits

    Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in Humans

    Get PDF
    Transcranial focused ultrasound (tFUS) is an emerging method for non-invasive neuromodulation akin to transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). tFUS offers several advantages over electromagnetic methods including high spatial resolution and the ability to reach deep brain targets. Here we describe two experiments assessing whether tFUS could modulate mood in healthy human volunteers by targeting the right inferior frontal gyrus (rIFG), an area implicated in mood and emotional regulation. In a randomized, placebo-controlled, double-blind study, participants received 30 s of 500 kHz tFUS or a placebo control. Visual Analog Mood Scales (VAMS) assessed mood four times within an hour (baseline and three times after tFUS). Participants who received tFUS reported an overall increase in Global Affect (GA), an aggregate score from the VAMS scale, indicating a positive shift in mood. Experiment 2 examined resting-state functional (FC) connectivity using functional magnetic resonance imaging (fMRI) following 2 min of 500 kHz tFUS at the rIFG. As in Experiment 1, tFUS enhanced self-reported mood states and also decreased FC in resting state networks related to emotion and mood regulation. These results suggest that tFUS can be used to modulate mood and emotional regulation networks in the prefrontal cortex

    Role of multicellular aggregates in biofilm formation

    Get PDF
    In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation
    • 

    corecore