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ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature
into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the
initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to
clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it
likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and devel-
opment is not known. Here we use a combination of experimental and computational approaches to determine the relative fit-
ness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the
relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth
resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the ag-
gregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because
extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of
seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and im-
mune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be re-
considered to incorporate the role of aggregates in biofilm initiation.

IMPORTANCE During the past decades, there has been a consensus around the model of development of a biofilm, involving at-
tachment of single planktonic bacterial cells to a surface and the subsequent development of a mature biofilm. This study pres-
ents results that call for a modification of this rigorous model. We show how free floating biofilm aggregates can have a profound
local effect on biofilm development when attaching to a surface. Our findings show that an aggregate landing on a surface will
eventually outcompete the biofilm population arising from single cells attached around the aggregate and dominate the local
biofilm development. These results point to a regime where preformed biofilm aggregates may have a fitness advantage over
planktonic cells when it comes to accessing nutrients. Our findings add to the increasingly prominent comprehension that bio-
film lifestyle is the default for bacteria and that planktonic single cells may be only a transition state at the most.
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Biofilms are three-dimensional (3D) communities of interact-
ing unicellular organisms (1). In a biofilm of supposedly ge-

netically identical clones, the constituent cells develop differenti-
ated patterns of gene expression and growth (2, 3). Differentiation
is often linked to the positioning of cells in the biofilm structure,
and the spatial location of cells also affects resource availability
and intercellular contacts (4).

The initiation of in vitro biofilm formation has traditionally
been thought to be due to random attachment of single cells to a
surface; these cells then divide and develop into mature, three-
dimensional biofilms (5, 6). However, when cells disperse to seed
new biofilms, detachment can occur by dispersal of single motile
cells or by the sloughing off of large aggregates of cells (7–9). Both

single cells and multicellular aggregates can then go on to initiate
new biofilms. For aquatic biofilms, the enhanced stickiness and
surface conditioning of planktonic multicellular aggregates have
been shown to increase the attachment of bacteria to a surface in
early biofilm initiation (10). Greater stickiness and surface condi-
tioning may be considered a quasiphenotypic physiological prop-
erty resulting from greater levels of organic polymers and colloids.
Similarly, an increased tendency toward aggregation, likely a
proxy for greater stickiness, has also been associated with in-
creased biofilm formation for Pseudomonas aeruginosa (11, 12).

Three-dimensional bacterial aggregates found in liquid batch
cultures of P. aeruginosa can have diameters of 10 to 400 �m and
can constitute up to 90% of the total biomass of the culture (13).
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In contrast, individual P. aeruginosa cells are rod shaped and have
a size of ~1 �m by 2 �m. Thus, multicellular P. aeruginosa aggre-
gates, when they attach to a surface, can extend significantly into
the vertical dimension, away from the attachment surface. More-
over, aggregates are structurally and physiologically distinct from
single cells. Yet, how these structural contrasts impact the seeding
and growth of new biofilms is not known. This constitutes a sig-
nificant gap in our understanding, since a biofilm seeded from an
aggregate may develop very differently from a biofilm seeded by
single cells.

To investigate the influence of preformed aggregates on bio-
film development, we first preformed computer simulations of
biofilm development from aggregates and single cells using an
individual-based model and subsequently measured the relative
growth of single cells and aggregates of P. aeruginosa during in
vitro biofilm development in flow cells. Using biomass accumula-
tion as a measure of growth fitness, we found that the relative
fitness of aggregates was highly dependent upon the surrounding
number and density of single cells on the surface, which we use as
a proxy for the level of competition for growth resources. We
found that when the initial surrounding density of single cells is
low, aggregates are less fit than single cells, yet when the surround-
ing density of single cells is high, aggregates are more fit than single
cells are. Our results show that in highly competitive environ-
ments, the 3D configuration in which cells land on a surface can
greatly affect their relative fitness, both in the earliest stages of
biofilm development and during long-time development. Our
work calls for a modification of the traditional model of biofilm
development to take into account the impact of preexisting cell
aggregates. This opens new avenues to understanding the evolu-
tion and ecology of biofilms in the environment and in chronic
infections such as cystic fibrosis, chronic wounds, and implant-
related infections.

RESULTS
Simulated fitness of aggregates versus single cells in the initial
formation of biofilms. To investigate the fate of initial aggregates
versus single cells during biofilm development, we first carried out
individual-based computer simulations, in which biofilms were
grown from aggregates surrounded by competing single cells. By
varying the density of single cells surrounding the aggregate, we
were able to vary the extent of competition in our simulations.

In our simulations, we use oxygen as the growth-limiting re-
source (see “The growth-limiting resource may be oxygen” be-
low). Figure 1A and B show the oxygen concentration profile after
30 h of growth in the low-density (Fig. 1A) and high-density (Fig.
1B) regimes. Comparing Fig. 1A and B with Fig. 1C and D, which
show the growth rates of individual cells as a function of their
position in the growing biofilm, it is clear that the oxygen concen-
tration profiles are influenced by the morphology of the growing
biofilms. In the growing biofilms, we see that oxygen is depleted in
the deeper regions; this oxygen-deprived layer emerges because
faster growing cells at the top (Fig. 1C and D) consume oxygen
faster than it can diffuse to the deeper regions. This in turn leads to
further heterogeneity in individual cell growth rates (Fig. 1C and
D), resulting in two distinct layers of growth activity: an outer
layer of metabolically active cells and an interior region of inactive
cells. Simulation snapshots of biofilms formed after 10, 30, and
120 h of simulated growth are shown in Fig. S1 in the supplemen-
tal material.

We compared the fate of cells that originated in aggregates with
that of initially unaggregated cells after 120 h of simulated growth
(see Materials and Methods). To this end, we used the number of
progeny per initiating cell, N/N0 (where N is the number of cells
at time t, and N0 is the initial number of cells) as a measure of
fitness. Our simulation results show enhanced performance of the
aggregates compared to unaggregated cells with increasing initial
density. When the initiating density of surrounding single cells is
low, initially unaggregated cells show higher fitness than those in
an aggregate (Fig. 2A). However, when the initiating density of
surrounding cells is high, cells in an aggregate perform better than
the initially unaggregated cells over long times (Fig. 2B). This
change in the relative fitness reflects a decrease in the fitness of the
single cells as their density increases, rather than any substantial
change in fitness of the aggregated cells (see Fig. S2 in the supple-
mental material).

The interplay between competition and spatial structure de-
termines the relative fitness of aggregates. Our simulations show
that the aggregate produces more progeny per initial cell than do
its initially unaggregated counterparts only when competition for
resources is high (and over long times, when space and resources
become limited due to larger numbers of cells). Why does in-
creased competition favor the aggregate? Closer inspection of
Fig. 2A and B reveal that, in fact, the fate of the aggregate is little
affected by the increase in cell density on the surface. For instance,
N/N0 for the aggregate at 30 h decreases from ~14 (14.27) to ~11
(10.94) when going from low density to high density. However,
the decrease in N/N0 for the initially unaggregated cells over the
same time period is much larger (~328 to ~15). To analyze the fate
of the aggregate in more detail, Fig. 1E and F show the average
number of progeny produced by cells in the initial aggregate as a
function of their initial position. As shown previously (14), the
initial position of a cell within an aggregate has a strong effect on
the number of progeny it produces; cells in the interior produce
fewer progeny than those initially located at the upper edges
(Fig. 1E). With increasing density of surrounding cells on the sur-
face (Fig. 1F), we see that cell fate is even more heterogeneous,
with the most prolific cells now localized in the highest portion of
the aggregate. Thus, although the increased density of unaggre-
gated cells on the surface increases the level of competition for
space and resources, our simulations reveal that the few cells ini-
tially located at the top of the aggregate dominate the fate of the
aggregate at all levels of competition.

The relative fitness of aggregates and single cells depends on
the initial cell density. To test our in silico simulation predictions,
we investigated experimentally the degree to which seeding with
single cells versus preformed aggregates gave rise to different pat-
terns of biofilm growth. We inoculated flow cells with an over-
night culture containing both planktonic cells and aggregates. By
varying the cell density of the inoculum from an optical density
(OD) of 0.001 to 0.1, we were able to vary the seeding density of
single cells and thus the level of competition for growth resources
on the coverslip surface of the flow cell. We imaged single cells and
aggregates over the first 9 h of growth, and from these data, we
obtained growth rates based on the change in biomass over time.
Due to small variations in growth rates from experiment to exper-
iment, we concentrated solely on the relative fitness of single cells
and aggregates within the same experiment and did not compare
absolute growth rates between experiments. As predicted by our
simulations, we found that the relative fitness of aggregates com-
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pared to that of single cells depends markedly on the density of
seeding cells. At a low inoculum density (OD of 0.001), aggregates
grew (0.1920 � 0.0126 division h�1) at a significantly lower rate
than single cells grew (0.23 � 0.0159 division h�1) (P � 0.0001).
At a medium inoculum density (OD of 0.01), there was no differ-
ence in growth rate between aggregates (0.2349 � 0.028 division
h�1) and single cells (0.224 � 0.031 division h�1) (P � 0.414). At
a high inoculum density (OD of 0.1), cells in aggregates grew faster
(0.24 � 0.017 division h�1) than single cells (0.1795 � 0.04 divi-
sion h�1) (P � 0.0029). Growth rates for cells in aggregates and
single cells are plotted in Fig. 3A to C, and the results of exponen-
tial fits and significance tests are summarized in Table S1 in the
supplemental material.

Although growth of single cells and aggregates over the first 9 h
of growth appears exponential, fitting with a single exponent
makes the implicit assumption that all cells within an aggregate are

growing at the same rate. To avoid this assumption, we also de-
scribe growth in terms of the number of progeny per initial cell,
N/N0. Here, N is the biomass after 9 h of growth, and N0 is the
initial biomass. We find that N/N0 is greater for the aggregates in
the high-density treatment (Fig. 3D) and greater for single cells at
low density (Fig. 3F). Thus, the N/N0 representation captures the
same density-dependent advantage for aggregates as the exponen-
tial growth rate representation. Therefore, our results show that
there is a relative disadvantage to growing in an aggregate at low
competition and a relative advantage to growing in an aggregate at
high competition.

To explore the dynamics of competition and the spatial distri-
bution of cells within the biofilm over longer time periods, we
followed the growth of aggregates and single cells in the flow cell
up to 99 h but focused primarily on the first 24 h after inoculation.
We found that areas that were seeded with an aggregate developed

FIG 1 Biofilm morphology shapes the oxygen concentration profile, with the fittest cells initially located at the top. (A and B) The oxygen concentration (in
grams liter�1) (right-hand y axes) in a sample simulation after 30 h of growth of cells at low density (0.01 cell �m�1) (A) and high density (0.5 cell �m�1) (B).
x and y (both in micrometers) are the spatial dimensions of the simulation domain. (C and D) Growth rate (�) (right-hand y axes) for the resulting populations
after 30 h of growth at low density (0.01 cell �m�1) (C) and high density (0.5 cell �m�1) (D). (E and F) 2D histograms representing the number of progeny, N
(right-hand y axes), produced after 30 h of growth by individual bacteria as a function of their initial location in the aggregate: low density (0.01 cell �m�1) (E)
and high density (0.5 cell �m�1) (F). These distributions were averaged over 40 simulations for each aggregate. Note that the gradient in the number of progeny
is so large that a log scale is used for visualization purposes.
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a corresponding large vertical protrusion above the surrounding
biofilm lawn (Fig. 4D). Areas that were initially seeded by only
single cells developed into a much more homogeneous, unstruc-
tured lawn (Fig. 4C).

The fitness of cells is enhanced by higher spatial positioning.
Taken together, our simulation results and experimental results
suggest that height above the surface of the flow chamber may be
a crucial factor in our experimental setup; for example, in our
simulations, cells that are at the top of an aggregate produce more
progeny. This suggests that, in general, cells positioned above the
surface of the flow chamber should outperform cells that are po-
sitioned closer to the surface. To test this, we measured the growth
of single cells positioned on a glass step 100 �m above the chamber
surface and compared it to the growth of single cells on the cham-
ber surface. Indeed, we found that, regardless of the initial density,
cells positioned on the step (see Materials and Methods; see Fig. S5
in the supplemental material) grew faster than single cells on the
chamber surface (P � 0.004, P � 0.0079, and P � 0.004 for ODs of
0.1, 0.01, and 0.001, respectively) (Fig. 5; see Table S2 in the sup-
plemental material). Furthermore, we also performed a series of
simulations in which we eliminated the height advantage of the
aggregate by surrounding it by a pregrown layer of competitor
cells of equal height (see Materials and Methods and supplemental
material). As expected, the cells in the aggregate no longer outper-
formed the single cells in these simulations.

Better substrate access at the top of aggregates can lead to
growth instability. Our simulations show that an aggregate con-
tains a subpopulation of slow-growing cells in its center and a
subpopulation of fast-growing cells at the top of the aggregate; this
differentiation arises due to spatial gradients in the growth re-
source. Since cells at the top of an aggregate grow faster, this might
suggest that, over time, the shape of aggregates should become less

FIG 2 Simulations reveal that aggregates are relatively fitter than single cells
at high density of competing cells on the surface and over long times. (A and B)
Accumulated biomass normalized to initial biomass (N/N0) after 10, 30, and
120 h for single cells and for aggregates initiated at a low starting density
(0.01 cell �m�1) (A) and a high starting density (0.5 cell �m�1) (B). For
biofilms that were initiated at a low density, single cells produce more progeny
than do cells in aggregates at all measured times. For biofilms that were initi-
ated at a high density, single cells are more fit for early growth but aggregated
cells produce more progeny than single cells do after 120 h.

FIG 3 In in vitro growth in flow cells, at low inoculum density, aggregates are less fit than single cells; at high inoculum density, aggregates are more fit than single
cells. (A to C) Fitted exponential growth rates during the first 9 h of growth for initially aggregated cell and initially single-cell populations, starting with different
cell densities in the inocula. Inoculum optical densities (OD) of 0.1 (A), 0.01 (B), and 0.001 (C) were used. (D to F) Measured biomass ratio N/N0 after 9 h of
growth. Inoculum ODs of 0.1 (D), 0.01 (E), and 0.001 (F) were used. Values are means � standard errors of the means (SEM) (error bars).
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spherical and more prolate spheroid. We checked for this change
in aspect ratio in our experiments by measuring the height and
width (at half height) of aggregates at the beginning of an experi-
ment and 6 h later. We then calculated the fold change in aspect
ratio over the 6-h time period, �H/�W, where �H is the fractional
change in height and �W is the fractional change in width. A value
of 1 for �H/�W would signify symmetrical growth in all direc-
tions, while a value greater than 1 would signify aggregates becom-
ing more prolate spheroid. To measure the fold change in aspect
ratio, we used wild-type (WT) P. aeruginosa PAO1 aggregates and
twitching motility knockout �pilA PAO1 aggregates at a high cell
density (Fig. 6). The change in aspect ratio is greater than 1 for the
�pil mutant, but not for the twitching-motile WT. This suggests
that, as our model predicts, cells at the top of the aggregate are
growing more quickly than cells in other parts of the aggregate—
but also that twitching-capable cells rearrange themselves to re-
duce the local cell density in the aggregate.

The growth-limiting resource may be oxygen. We found no
effect on our results upon varying the concentration of the carbon
source over 4 orders of magnitude, indicating that carbon is likely
not the limiting growth resource. In contrast, by measuring oxy-

FIG 5 Fitted exponential growth rates for the first 9 h of growth of single cells
of P. aeruginosa PAO1 either on the surface or elevated 100 �m above on a glass
platform. The fractional relative fitness (w) is about 0.5 for all densities evalu-
ated, indicating that cells on the step consistently have a growth advantage over
cells on the surface. Low density was an initial inoculum OD of 0.001. Medium
density was an initial inoculum OD of 0.01. High density was an initial inoc-
ulum OD of 0.1. Values are means � SEM (error bars).

FIG 4 The presence of multicellular aggregates at the start of biofilm growth is reflected in the structure of the biofilm a day later. Shown are perspective
projections created from confocal microscope z-stacks of Pseudomonas aeruginosa biofilms. (A) Single cells attached to the surface at 0 h. (B) A preformed
aggregate surrounded by single cells on the surface at 0 h. (C) Biofilm descending from single cells from panel A. (D) After 24 h of growth, a large biofilm structure
descending from the preformed aggregate shown in panel B surrounded by biofilm descending from single cells.
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gen concentrations in the inflow and outflow of our flow cells, we
find that oxygen, the only electron acceptor present in our media,
becomes limited within the first 9 h of growth for our high-density
inoculation. The values for the area under the curve (AUC) for
oxygen in the outflow medium were 546.4, 854.7, and 874.3 (% O2

saturation � h) for flow cells inoculated with cells at ODs of 0.1,
0.01, and 0.001, respectively, for the first 9 h of growth. Oxygen is
thus very limiting for growth in our flow cells, which were inocu-
lated with cells at an OD of 0.1. For flow cells inoculated with cells
at an OD of 0.01, oxygen is somewhat limiting. For the flow cells
inoculated with cells at an OD of 0.001, oxygen levels in the out-
flow are not limiting within the 9-h time frame in which growth
was measured. This strongly points toward oxygen as a growth-
limiting resource in our experiments at a high cell density (OD of
0.1) and to a lesser extent at a medium cell density (OD of 0.01). As
the outflow medium content is close to 100% O2 saturation for the
flow chambers inoculated with cells at a low density over all 9 h of
measurement, we anticipate no significant competition for oxy-
gen (Fig. 7).

DISCUSSION

Nonattached biofilm aggregates arise in the liquid phase of in vitro
bacterial cultures and in natural liquid environments, and these
aggregates are likely to attach often to surfaces. Despite this, little
is known about the role aggregates play in biofilm development
compared to single cells. This study examined the biofilm growth
dynamics that arise when a biofilm is seeded from a preformed
aggregate using both in silico simulation and a widely used in vitro

biofilm reactor system. Our simulations deliberately neglected
many biological mechanisms, including exopolysaccharide pro-
duction, cell-cell signaling, and cell detachment. Thus, any phe-
nomena that arise in our simulations can be attributed solely to
cell growth, competition for growth resources diffusing from
above, and mechanical interactions between cells. Therefore, we
attribute the change in relative fitness of the aggregates with the
level of competition to the interplay between the spatially struc-
tured environment and the spatial distribution of cells in the ag-
gregate.

We found that aggregates have a fitness advantage over single
cells when competition for resources is high since the elevated
position of cells at the top of the aggregate gives these cells better
access to growth resources. However, when competition is low,
the single cells have access to resources that is comparable to that
of cells at the top of the aggregate and better than that of cells in the
aggregate interior. As a result, when competition is low, single cells
are more fit than aggregates are. This shows that the relative fitness
of aggregates depends markedly on the density of surrounding
single cells, i.e., on the level of competition for growth resources.
When competition between aggregates and single cells is low, an
aggregate has a net growth disadvantage because the aggregate
interior has poor access to growth resources. However, if compe-
tition is high, aggregates have a higher net fitness, because extend-
ing vertically above the surface gives cells at the top of the aggre-
gates better access to growth resources. Our findings suggest that
we should reconsider our models of biofilm formation to incor-
porate the role of aggregates, because current models focus only
on growth that is initiated from individually attached cells.

Upon comparing results for short, intermediate, and long pe-
riods of biofilm growth, we found that the fitness of aggregates,
relative to that of single cells, increases with time (Fig. 2; see Fig. S4
in the supplemental material). Thus, the outcome of competition
between initially aggregated and single cells is dependent on time.
As biofilms develop, the descendants of aggregates tend to domi-
nate (Fig. 2 and 4), since competition for growth resources be-
comes more intense as the total biofilm biomass increases. This
suggests that, in the long term, if competition for growth resource
is the sole pressure on cells, structures such as aggregates that
protrude into the third dimension, and thus have better access to
growth resources, will always be favored over single cells and their
descendants.

We know from previous investigations, and have confirmed
here, that overnight liquid batch cultures of P. aeruginosa contain
both single cells and multicellular aggregates (13, 15). These mul-

FIG 6 Change in aspect ratio for aggregates after 6 h of growth at high
competition (OD of 0.1). Mean change in aspect ratio (�H/�W where H
represents height and W represents width) for motile (WT PAO1) and non-
motile (PAO1 �pilA) aggregates. Values are means � SEM (error bars).

FIG 7 Oxygen content in inflow and outflow of media to the flow cells inoculated with bacterial cells at an OD of 0.001, 0.01, or 0.1. After inoculation, the cells
were left without flow for 1 h before starting the flow at t0. From t0 to t9, the AUC values for outflow medium were 546.4, 854.7, and 874.3 for 0.1, 0.01, and 0.001
(% O2 saturation � h), respectively.
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ticellular aggregates range in size from 10 �m to several hundred
microns in diameter (13). After inoculating a flow cell with an
overnight culture of P. aeruginosa PAO1, one typically finds some
fields of view that are seeded only with single cells (Fig. 4A) and
other fields of view that are seeded with an aggregate surrounded
by single cells (Fig. 4B). We expect to see cells on the surface of an
aggregate grow faster than those in the interior because the latter
have restricted access to growth resources (4, 16).

The results of our in vitro flow cell experiments confirmed the
findings from our simulations, showing competition-dependent
fitness advantages for aggregates over single cells. The density of
surrounding single cells determines the relative impact of the spa-
tial distribution of cells in the aggregate. Under conditions of low
competition, single cells and cells on the surface of an aggregate
have free access to resources and can grow unrestricted, whereas
cells in the aggregate interior have less access to resources and
grow more slowly. This puts the cells in the aggregate at an overall
fitness disadvantage compared to single cells. However, as the level
of competition among cells on the chamber coverslip surface in-
creases, single cells on average produce fewer progeny. Cells at the
top of aggregates are elevated above the level of the surrounding
single cells and are closer to untapped growth resources. In this
scenario, cells within aggregates have a higher relative fitness than
single cells.

In addition, our in vitro step experiment shows an enhanced
growth rate for cells elevated above the surface of the flow cham-
ber compared to single cells positioned on the surface of the flow
chamber. This supports our hypothesis that cells on the top of an
aggregate have a growth advantage over single cells, due to their
height. This growth advantage of the cells at the top of the aggre-
gate compensates, under conditions of high competition, for the
slower-growing cells contained within the aggregates.

Our results suggest a new model for early biofilm development,
in which seeding of the biofilm from preformed aggregates plays a
major role (Fig. 8). Our results also imply that, when competition
for resources is the main selective force, structures that initially
protrude above a surrounding lawn of cells will be favored. These
results raise a number of evolutionary questions. Why might evo-
lution favor the formation of multicellular aggregates, given that
our simulations show that only cells at the top of aggregates pro-
duce large numbers of progeny and many of the constituent ag-
gregate cells sacrifice their own fitness for the benefit of these cells?
Aggregation may be maintained by kin selection, a process by
which traits are favored because of their beneficial effects on the

fitness of close relatives, such as those cells at the top of aggregates
(17, 18). Previous simulation work has also shown height-related
fitness advantages and kin selection during biofilm development,
suggesting that strains of bacteria that produce aggregation-
promoting extracellular polymeric substances (EPS) gain a fitness
advantage in biofilms by pushing their progeny upwards into the
medium (19). Our work supports this view, while also showing
that such fitness advantages can arise by aggregation as well as by
traits such as EPS production.

While our work suggests one possible advantage of aggregate
formation, we note that cells in an aggregate may also incur other
benefits, especially in an in vivo infection. Aggregates exhibit many
of the same phenotypes as surface-attached biofilms (15), mean-
ing that they demonstrate increased antibiotic tolerance, resil-
ience toward immune response, and a stabilized chemical envi-
ronment (5, 7, 15, 20–23). In an infectious regime, detached,
colonizing single cells may be more vulnerable than aggregates
(24, 25). Thus, aggregates may provide bacteria with a protected
mode of colonization of new niches in a hostile environment (15,
22). In fact, in ex vivo samples from chronic infections, single cells
are rarely observed; instead, nonattached aggregates seem to be
the norm (20, 26–28).

Conclusion. In conclusion, our results show that aggregates
perform better than single cells during biofilm development when
the biofilm is seeded at a high cell density, corresponding to high
initial competition, and that over long time scales, biofilm struc-
tures are likely to become dominated by progeny originating from
aggregates. Our results call for a revision of the prevailing picture
of in vitro biofilm development to consider the role played by
biofilm seeding by preformed aggregates. While our study has
focused on the role of spatial structure in the development of
bacterial biofilms, 3D growth of multicellular assemblies is a uni-
versal phenomenon within biology, from carcinogenesis to plant
development. Therefore, the phenomenon identified here, involv-
ing the interplay between the spatial structure of the growing cell
assembly and of the surrounding growth resource field, may have
wider implications for other biological processes and for under-
standing multicellular assembly in general.

MATERIALS AND METHODS
Bacterial strains. All P. aeruginosa strains used in this study were in a
PAO1 background, which was obtained from the University of Washing-
ton, Seattle, USA. To enable visualization with confocal microscopy, we

FIG 8 Proposed revision of biofilm development. The five classical stages of development in the presence of a preformed, multicellular aggregate are shown. In
stage 1, the surface can be seeded either by single cells in a planktonic phenotype or by a preformed aggregate. In stage 2, the single cells attach irreversibly, and
the aggregated population grows. In stage 3, the biofilm matures with complete matrix. Descendants from the aggregate population reach out in an elevated
structure. Stage 4 is the mature structured biofilm. The descendants of the aggregate tower several times higher than any surrounding structures descended from
single cells. In stage 5, dispersal of single cells and sloughing off of biofilm aggregates occur.
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tagged wild-type (WT) P. aeruginosa PAO1 with green fluorescent protein
(GFP) by Tn7 transformation as described previously (29).

Growth conditions. We streaked all strains from frozen stock onto
lysogeny broth (LB) (Fisher Scientific, USA) agar plates and incubated
them overnight at 37°C. Colonies were inoculated into LB broth (Fisher
Scientific, USA) and grown, shaking, overnight at 37°C. We determined
the optical density at 600 nm (OD600) of the overnight culture using a
spectrophotometer (Genesys, USA), and the culture was then adjusted to
the desired OD by dilution into M9 minimal medium (Serva, Germany)
with 10% (vol/vol) A10 phosphate buffer [0.15 M (NH4)2SO4, 0.42 M
Na2HPO4 � H2O, 0.22 M KH2PO4, and 0.51 M NaCl; pH 6.7]. We sup-
plemented the growth medium with 0.3 mM glucose (Fisher Scientific,
USA) as a carbon source. The resulting bacterial suspensions, which con-
tained a mixture of aggregates and single cells, were then used to initiate
the growth of biofilms. To test whether glucose is the limiting resource, we
also carried out experiments using 0.003 mM and 30 mM glucose.

We grew biofilms in standard flow cells by the method of Tolker-
Nielsen and Sternberg (30) with the modifications of Hutchison et al.
(29). We filled the flow cell system with preheated (37°C) growth medium
as described above, and each of the three independent chambers of the
flow cell was inoculated with 150 to 250 �l of diluted bacterial culture. We
inoculated the flow cell by injecting bacterial culture into each chamber
using a Luer-Lock connector. We left the inoculated flow cell alone for 1 h
to allow bacteria to attach to the glass coverslip before flow was started.
We maintained a laminar flow at 3 ml h�1 with a Watson-Marlow
205 S/CA pump (Watson-Marlow, USA) for the duration of the experi-
ment. Once flow was started, any remaining suspended cells or aggregates
were removed from the system and did not contribute significantly to
biomass accumulation.

Imaging biofilm growth. Biofilms were grown and observed in situ on
a confocal microscope (Zeiss Imager.Z2 microscope with LSM 710 CLSM
running Zeiss Zen 2010v. 6.0 [Zeiss, Germany]) for qualitative analysis
and an inverted confocal microscope (Olympus FV1000 microscope, run-
ning Fluoview 3.1a software [Olympus, Japan]) for quantitative measure-
ments of a time series of z-stacks. For the latter, a programmable motor-
ized stage was employed to cycle between several locations (n � 10 to 35)
in each of three independent sample chambers. This allowed us to study
the growth dynamics of regions of the flow cell with different initial con-
ditions in the same experiment, with adequate statistics for each initial
condition, and allowed us to identify confidently which location initially
contained an aggregate and which contained single cells only. The micro-
scope stage area was enclosed in an incubator chamber that maintained a
constant temperature of 37°C.

Z-stacks of regions that initially contained a preformed aggregate
and/or one or more single cells were recorded every 3 h, using 488-nm
excitation and a 505- to 525-nm emission filter. The growth of biofilms in
flow cells is typically measured by measuring biomass (30, 31–33). We
used the free, open-source software ImageJ (National Institutes of Health,
USA) to crop images to separate aggregates and their descendants from
single cells and their descendants. Biomass was then measured and de-
scribed in terms of pixels cubed, or voxels, in MatLab (MathWorks, USA)
using in-house code (29). Growth in biomass as a function of time could
be fitted with an exponential function. The specific growth rate, �, is given
by the exponent in the expression biomass � Ae�t, where A is a biomass at
time zero (t0) and t is time. � represents the growth rate per unit of
biomass and can be used as a proxy measure of cell fitness (which is
ultimately a cell’s ability to propagate its genes to future generations [34]).

In this work, we classified seeding structures as aggregates only if they
were at least 5 �m high and had a volume at least 10 times that of a single
cell. Structures intermediate in size between this and single cells were
excluded from our analysis. Because we monitored biofilm growth con-
tinuously under the microscope, we would have been able to identify
attachment of new cells to the growing biofilm from the overlying growth
medium. This was not observed, either for aggregates or single cells.

Effect of elevated position on growth. We examined the effect of
height above the surface on the growth rate of cells within the biofilm. We
broke glass coverslips and selected shards that had a sharp, pointed tip to
reduce the influence of fluid flow around the shard and that were small
enough to fit inside the chamber. Using silicone sealant (3M, USA), we
placed a shard in the sample chamber such that the tip pointed opposite to
the direction of flow. Bacteria that attached to the shard were positioned
about 100 �m above the surface of the sample chamber and were expected
to experience similar hydrodynamic conditions as those experienced by
cells positioned at the very top of an aggregate. The net discharge flow in
the sample chamber is laminar, with a Reynolds number of ~3 describing
effective transport integrated over the entire chamber. Because laminar
flow results in a fluid speed that varies with distance above the surface, we
also calculate Reynolds numbers at specific locations important to our
experiments: the Reynolds numbers for cells on top of the shard, on top of
a typical aggregate, and 1 �m off the surface are about 50, 30, and 0.03,
respectively. These Reynolds numbers are consistent with nonturbulent
flow. For “shard” experiments, the inoculation and flow conditions were
unchanged from our other experiments. The imaging was modified
slightly in that a 40� objective (Olympus, USA) was used rather than a
60� or 100� objective. The lower-magnification objective had a greater
working distance, which facilitated imaging 100 �m into the sample
chamber. The analysis of images to determine growth rate was performed
as described above.

Horizontal oxygen gradients. We measured oxygen concentration in
media as it entered and left the inoculated flow cell with two flowthrough
sensor cells and the FireStingO2 (Pyroscience, Germany). Measurements
were taken every 60 s. This provided us with time-resolved information on
the percent oxygen saturation of the ingoing and outgoing media, and
thereby also allowed quantification of the drop in oxygen across the flow
cell as a function of biofilm growth time.

Computer simulation algorithm. We used the agent-based microbial
simulation package iDynoMiCs (35) to model the growth of biofilms that
were seeded from preformed aggregates and single cells. In iDynoMiCs,
bacterial cells are represented as particulate agents that grow and divide as
a result of consumption of nutrients (see supplemental material). The
growth and division processes lead to local mechanical stresses within the
biofilm that are relieved by a “shoving” algorithm. In the simulations,
nutrients are represented by concentration fields, which change as a result
of consumption and diffusion from above. These processes give rise to
local concentration gradients that can strongly influence the growth dy-
namics and morphology of the developing biofilm (4, 36–39). As is com-
mon in computational biofilm studies (19, 35, 39–43), our simulations
were performed in two dimensions (2D) for reasons of computational
efficiency. However, previous work shows that similar results are likely to
be obtained in 3D simulations (14).

In our simulations, microbial growth kinetics were modeled using the
Monod growth equation

dX

dt
� �max

�O�
KO � �O��X�

where [X] is the local concentration of biomass, [O] is the local concen-
tration of oxygen, �max is the maximum specific growth rate, and KO is the
concentration of oxygen at which the growth rate is half the maximum
(see supplemental material). The growth parameters �max and KO were
assumed to be the same for all cells (i.e., both aggregated and single cells).
We used growth parameters from previous empirical studies on P. aerugi-
nosa, with oxygen as the single rate-limiting nutrient (Table 1). A bulk
oxygen concentration of 6.64 � 10�3 g liter�1 (44) was used in all simu-
lations, consistent with the saturation concentration of oxygen in water at
37°C. Using these parameters, our simulations produce biofilms several
hundred micrometers in height after 120 h of growth (see Fig. S1 in the
supplemental material).

Creation of initial simulation configurations. To create the initial
configurations for our simulations, circular aggregates of cells were gen-
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erated by excision of an ~100-cell circular region from a biofilm that had
previously been simulated (see supplemental material). This aggregate
was placed on a surface and surrounded by single cells, at a given surface
density, and placed at random on regions of the surface that were not
occupied by the aggregate (see Fig. S1A in the supplemental material). In
the simulations presented here, the single cells on the surface form a layer
that is only approximately one cell thick even at our highest density.

To ensure adequate statistical sampling of aggregate configurations,
four independent aggregate configurations were generated, each of which
was simulated for 10 independent realizations of the distribution of sur-
rounding single cells on the surface for each cell density. Thus, each sim-
ulation data point represents results averaged over 40 different simula-
tions.

Simulation runs. For each value of the surface density of the single
cells, we simulated up to 120 h of biofilm growth starting from each of our
40 cell configurations. The growth of the aggregate, in terms of number of
progeny per initial aggregated cell, was computed for each simulation run,
and the results were averaged over the 40 runs.

To assess the fitness of the single cells, initially seeded on the surface,
we performed separate simulations in the absence of the aggregate, for
each value of the single-cell density. Analyzing single-cell and aggregate
fitness in separate simulations mimics our experimental scenario, in
which the growth of the initially unaggregated cells was monitored in
regions many fields of view away from an aggregate. Cell growth, in terms
of number of progeny per initial single cell, was also measured in these
simulations.

For a control, we also performed simulations in which the height ad-
vantage of the aggregate was eliminated. To do this, we surrounded the
aggregate with a high density of surrounding cells on the surface (0.5 cell
�m�1) and disabled the growth of the aggregate until the surrounding
cells grew to the height of the aggregate (see Fig. S7A in the supplemental
material). At this point, we enabled growth of the aggregate cells and ran
the simulation for 120 h. To assess the success of the aggregate versus the
single cells, we subtracted the time it took for the single unaggregated cells
to reach the same height of the aggregate (15 h) from 120 h. The “fitness”
measure for the red cells, again assessed in separate simulations, was then
given by N105/N0 where N105 is the biomass after 105 h.

Statistical analysis. Statistical significance of both experimental and
simulation data was evaluated by a Mann-Whitney test. P values of �0.05
were considered significant. All tests were performed in GraphPad Prism
5 (GraphPad Software, USA).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.00237-16/-/DCSupplemental.

Text S1, PDF file, 0.5 MB.
Figure S1, TIF file, 0.6 MB.
Figure S2, TIF file, 0.03 MB.
Figure S3, TIF file, 0.2 MB.
Figure S4, TIF file, 0.01 MB.
Figure S5, TIF file, 0.2 MB.
Figure S6, TIF file, 0.02 MB.
Figure S7, TIF file, 0.1 MB.
Table S1, DOCX file, 0.02 MB.
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