501 research outputs found

    Structural and vibrational properties of two-dimensional MnxOy\rm Mn_xO_y nanolayers on Pd(100)

    Full text link
    Using different experimental techniques combined with density functional based theoretical methods we have explored the formation of interface-stabilized manganese oxide structures grown on Pd(100) at (sub)monolayer coverage. Amongst the multitude of phases experimentally observed we focus our attention on four structures which can be classified into two distinct regimes, characterized by different building blocks. Two oxygen-rich phases are described in terms of MnO(111)-like O-Mn-O trilayers, whereas the other two have a lower oxygen content and are based on a MnO(100)-like monolayer structure. The excellent agreement between calculated and experimental scanning tunneling microscopy images and vibrational electron energy loss spectra allows for a detailed atomic description of the explored models.Comment: 14 pages, 11 figure

    Effect of recombinant human nerve growth factor eye drops in patients with dry eye: a phase IIa, open label, multiple-dose study

    Get PDF
    Background: Dry eye disease (DED) affects more than 14% of the elderly population causing decrease of quality of life, high costs and vision impairment. Current treatments for DED aim at lubricating and controlling inflammation of the ocular surface. Development of novel therapies targeting different pathogenic mechanisms is sought-after. The aim of this study is to evaluate safety and efficacy of recombinant human nerve growth factor (rhNGF) eye drops in patients with DED. Methods: Forty consecutive patients with moderate to severe DED were included in a phase IIa, prospective, open label, multiple-dose, clinical trial to receive rhNGF eye drops at 20 ÎŒg/mL (Group 1: G1) or at 4 ÎŒg/mL (Group 2: G2) concentrations, two times a day in both eyes for 28 days (NCT02101281). The primary outcomes measures were treatment-emerged adverse events (AE), Symptoms Assessment in Dry Eye (SANDE) scale, ocular surface staining and Schirmer test. Results: Of 40 included patients, 39 completed the trial. Both tested rhNGF eye drop concentrations were safe and well tolerated. Twenty-nine patients experienced at least one AE (14 in G1 and 15 in G2), of which 11 had at least 1 related AE (8 in G1 and 3 in G2). Both frequency and severity of DED symptoms and ocular surface damage showed significant improvement in both groups, while tear function improved only in G1. Conclusions: The data of this study indicate that rhNGF eye drops in both doses is safe and effective in improving symptoms and signs of DED. Randomised clinical trials are ongoing to confirm the therapeutic benefit of rhNGF in DED. Trial registration number: NCT02101281

    The adsorption structure of furan on Pd(1 1 1)

    Get PDF
    The structure of molecular furan, C4H4O, on Pd(1 1 1) has been investigated by O K-edge near-edge X-ray absorption fine structure (NEXAFS) and C 1s scanned-energy mode photoelectron diffraction (PhD). NEXAFS shows the molecule to be adsorbed with the molecular plane close to parallel to the surface, a conclusion confirmed by the PhD analysis. Chemical-state specific C 1s PhD data were obtained for the two inequivalent C atoms in the furan, the α-C atoms adjacent to the O atom, and the ÎČ-C atoms bonded only to C atoms, but only the PhD modulations for the α-C emitters were of sufficiently large amplitude for detailed evaluation using multiple scattering calculations. This analysis shows the α-C atoms to be located approximately 0.6 Å off-atop surface Pd atoms with an associated C–Pd bondlength of 2.13 ± 0.03 Å. Two alternative local geometries consistent with the data place the O atom in off-atop or near-hollow locations, and for each of these local structures there are two equally-possible registries relative to the fcc and hcp hollow sites. The results are in good agreement with earlier density functional theory calculations which indicate that the fcc and hcp registries are equally probable, but the PhD results fail to distinguish the two distinct local bonding geometries

    Photoelectron diffraction: from phenomenological demonstration to practical tool

    Get PDF
    The potential of photoelectron diffraction—exploiting the coherent interference of directly-emitted and elastically scattered components of the photoelectron wavefield emitted from a core level of a surface atom to obtain structural information—was first appreciated in the 1970s. The first demonstrations of the effect were published towards the end of that decade, but the method has now entered the mainstream armoury of surface structure determination. This short review has two objectives: First, to outline the way that the idea emerged and the way this evolved in my own collaboration with Neville Smith and his colleagues at Bell Labs in the early years: Second, to provide some insight into the current state-of-the art in application of (scanned-energy mode) photoelectron diffraction to address two key issue in quantitative surface structure determination, namely, complexity and precision. In this regard a particularly powerful aspect of photoelectron diffraction is its elemental and chemical-state specificity

    A structural study of a C3H3 species coadsorbed with CO on Pd(1 1 1)

    Get PDF
    The combination of chemical-state-specific C 1s scanned-energy mode photoelectron diffraction (PhD) and O K-edge near-edge X-ray absorption fine structure (NEXAFS) has been used to determine the local adsorption geometry of the coadsorbed C3H3 and CO species formed on Pd(1 1 1) by dissociation of molecular furan. CO is found to adopt the same geometry as in the Pd(1 1 1)c(4 × 2)-CO phase, occupying the two inequivalent three-fold coordinated hollow sites with the C–O axis perpendicular to the surface. C3H3 is found to lie with its molecular plane almost parallel to the surface, most probably with the two ‘outer’ C atoms in equivalent off-atop sites, although the PhD analysis formally fails to distinguish between two distinct local adsorption sites

    Local adsorption structure and bonding of porphine on Cu(111) before and after self-metalation

    Full text link
    We have experimentally determined the lateral registry and geometric structure of free-base porphine (2H-P) and copper-metalated porphine (Cu-P) adsorbed on Cu(111), by means of energy-scanned photoelectron diffraction (PhD), and compared the experimental results to density functional theory (DFT) calculations that included van der Waals corrections within the Tkatchenko-Scheffler approach. Both 2H-P and Cu-P adsorb with their center above a surface bridge site. Consistency is obtained between the experimental and DFT-predicted structural models, with a characteristic change in the corrugation of the four N atoms of the molecule's macrocycle following metalation. Interestingly, comparison with previously published data for cobalt porphine adsorbed on the same surface evidences a distinct increase in the average height of the N atoms above the surface through the series 2H-P, Cu-P, cobalt porphine. Such an increase strikingly anti-correlates the DFT-predicted adsorption strength, with 2H-P having the smallest adsorption height despite the weakest calculated adsorption energy. In addition, our findings suggest that for these macrocyclic compounds, substrate-to-molecule charge transfer and adsorption strength may not be univocally correlated

    Adsorption bond length for H<sub>2</sub>O on TiO<sub>2</sub>(110): A key parameter for theoretical understanding

    Get PDF
    Scanned-energy mode photoelectron diffraction results show the adsorption site of molecular water on TiO2(110) to be atop under-coordinated surface Ti atoms, confirming the results of total energy calculations and STM imaging. However, the Ti-Owater bond length is 2.21±0.02 Å, much longer than Ti-O bond lengths in strongly chemisorbed species on this surface, but significantly shorter than found in most total energy calculations. The need for theory to describe this weak bond effectively may be a key factor in the controversial problem of understanding this important surface reaction system

    The local adsorption geometry of benzenethiolate on Cu(1 0 0)

    Get PDF
    The local adsorption geometry of benzenethiolate in the ordered c(2 × 6) phase on Cu(1 0 0) has been investigated by a combination of S K-edge near-edge X-ray absorption fine structure (NEXAFS), normal incidence X-ray standing waves (NIXSW) and S 1s scanned-energy mode photoelectron diffraction (PhD). NEXAFS and PhD show that the molecular plane is tilted from the surface normal by 20 ± 15°, while NIXSW clearly identifies the S head-group as occupying the four-fold coordinated hollow sites. PhD shows the S atoms lies 1.34 ± 0.04 Å above the outermost Cu atomic layer, leading to a Cu–S bondlength of 2.25 ± 0.02 Å. The combination of the PhD and NIXSW results shows the Cu surface layer has an outward relaxation of 0.15 ± 0.06 Å. Possible origins for this large adsorbate-induced relaxation are discussed

    Validation of the inverted adsorption structure for free-base tetraphenyl porphyrin on Cu(111)

    Get PDF
    Utilising normal incidence X-ray standing waves we rigourously scrutinise the “inverted model” as the adsorption structure of free-base tetraphenyl porphyrin on Cu(111). We demonstrate that the iminic N atoms are anchored at near-bridge adsorption sites on the surface displaced laterally by 1.1 ± 0.2 Å in excellent agreement with previously published calculations
    • 

    corecore