36,080 research outputs found
Sonification, Musification, and Synthesis of Absolute Program Music
Presented at the 22nd International Conference on Auditory Display (ICAD-2016)When understood as a communication system, a musical work can be interpreted as data existing within three domains. In this interpretation an absolute domain is interposed as a communication channel between two programatic domains that act respectively
as source and receiver. As a source, a programatic domain creates, evolves, organizes, and represents a musical work. When acting as a receiver it re-constitutes acoustic signals into unique auditory experience. The absolute domain transmits physical vibrations
ranging from the stochastic structures of noise to the periodic waveforms of organized sound. Analysis of acoustic signals suggest recognition as a musical work requires signal periodicity to exceed some minimum. A methodological framework that satisfies
recent definitions of sonification is outlined. This framework is proposed to extend to musification through incorporation of data features that represent more traditional elements of a musical work such as melody, harmony, and rhythm
The measurement of frequency and frequency stability of precision oscillators
The specification and performance of precision oscillators is discussed as a very important topic to the owners and users of these oscillators. This paper presents at the tutorial level some convenient methods of measuring the frequencies of precision oscillators -- giving advantages and disadvantages of these methods. Further it is shown that by processing the data from the frequency measurements in certain ways, one may be able to state more general characteristics of the oscillators being measured. The goal in this regard is to allow the comparisons of different manufacturers' specifications and more importantly to help assess whether these oscillators will meet the standard of performance the user may have in a particular application
A simulation comparison of methods for new product location
Includes bibliographical references (p. 29-31)
Quo vadimus? The 21st Century and multimedia
The concept is related of computer driven multimedia to the NASA Scientific and Technical Information Program (STIP). Multimedia is defined here as computer integration and output of text, animation, audio, video, and graphics. Multimedia is the stage of computer based information that allows access to experience. The concepts are also drawn in of hypermedia, intermedia, interactive multimedia, hypertext, imaging, cyberspace, and virtual reality. Examples of these technology developments are given for NASA, private industry, and academia. Examples of concurrent technology developments and implementations are given to show how these technologies, along with multimedia, have put us at the threshold of the 21st century. The STI Program sees multimedia as an opportunity for revolutionizing the way STI is managed
Strategy Options for Disaster Risk Reduction Through Institutional Improvements and Enhanced Financial Sustainability: Recommendations
This presentation was commissioned by the Natural Disaster Network of the Regional Policy Dialogue for the V Hemispheric Meeting celebrated on June 13th and 14th, 2005.Disasters, Management Network Gestión de la Red
A strongly inhomogeneous superfluid in an iron-based superconductor
Among the mysteries surrounding unconventional, strongly correlated
superconductors is the possibility of spatial variations in their superfluid
density. We use atomic-resolution Josephson scanning tunneling microscopy to
reveal a strongly inhomogeneous superfluid in the iron-based superconductor
FeTe0.55Se0.45. By simultaneously measuring the topographic and electronic
properties, we find that this inhomogeneity in the superfluid density is not
caused by structural disorder or strong inter-pocket scattering, and does not
correlate with variations in Cooper pair-breaking gap. Instead, we see a clear
spatial correlation between superfluid density and quasiparticle strength,
putting the iron-based superconductors on equal footing with the cuprates and
demonstrating that locally, the quasiparticles are sharpest when the
superconductivity is strongest. When repeated at different temperatures, our
technique could further help elucidate what local and global mechanisms limit
the critical temperature in unconventional superconductors
- …
