345 research outputs found

    Electronic Structure of Dangling Bonds in Amorphous Silicon Studied via a Density-Matrix Functional Method

    Full text link
    A structural model of hydrogenated amorphous silicon containing an isolated dangling bond is used to investigate the effects of electron interactions on the electronic level splittings, localization of charge and spin, and fluctuations in charge and spin. These properties are calculated with a recently developed density-matrix correlation-energy functional applied to a generalized Anderson Hamiltonian, consisting of tight-binding one-electron terms parametrizing hydrogenated amorphous silicon plus a local interaction term. The energy level splittings approach an asymptotic value for large values of the electron-interaction parameter U, and for physically relevant values of U are in the range 0.3-0.5 eV. The electron spin is highly localized on the central orbital of the dangling bond while the charge is spread over a larger region surrounding the dangling bond site. These results are consistent with known experimental data and previous density-functional calculations. The spin fluctuations are quite different from those obtained with unrestricted Hartree-Fock theory.Comment: 6 pages, 6 figures, 1 tabl

    Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil

    Get PDF
    Iron intakes calculated from one-day weighed records were compared with those from same day analyzed duplicate diet composites collected from 120 Malawian women living in two rural districts with contrasting soil mineralogy and where threshing may contaminate cereals with soil iron. Soils and diet composites from the two districts were then subjected to a simulated gastrointestinal digestion and iron availability in the digests measured using a Caco-2 cell model. Median analyzed iron intakes (mg/d) were higher (p < 0.001) than calculated intakes in both Zombwe (16.6 vs. 10.1 mg/d) and Mikalango (29.6 vs. 19.1 mg/d), attributed to some soil contaminant iron based on high Al and Ti concentrations in diet composites. A small portion of iron in acidic soil from Zombwe, but not Mikalango calcareous soil, was bioavailable, as it induced ferritin expression in the cells, and may have contributed to higher plasma ferritin and total body iron for the Zombwe women reported earlier, despite lower iron intakes. In conclusion, iron intakes calculated from food composition data were underestimated, highlighting the importance of analyzing duplicate diet composites where extraneous contaminant iron from soil is likely. Acidic contaminant soil may make a small but useful contribution to iron nutrition

    Systematic Study of Electron Localization in an Amorphous Semiconductor

    Full text link
    We investigate the electronic structure of gap and band tail states in amorphous silicon. Starting with two 216-atom models of amorphous silicon with defect concentration close to the experiments, we systematically study the dependence of electron localization on basis set, density functional and spin polarization using the first principles density functional code Siesta. We briefly compare three different schemes for characterizing localization: information entropy, inverse participation ratio and spatial variance. Our results show that to accurately describe defect structures within self consistent density functional theory, a rich basis set is necessary. Our study revealed that the localization of the wave function associated with the defect states decreases with larger basis sets and there is some enhancement of localization from GGA relative to LDA. Spin localization results obtained via LSDA calculations, are in reasonable agreement with experiment and with previous LSDA calculations on a-Si:H models.Comment: 16 pages, 11 Postscript figures, To appear in Phys. Rev.

    Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions

    Full text link
    We present a theoretical description of the thermopower due to magnon-assisted tunneling in a mesoscopic tunnel junction between two ferromagnetic metals. The thermopower is generated in the course of thermal equilibration between two baths of magnons, mediated by electrons. For a junction between two ferromagnets with antiparallel polarizations, the ability of magnon-assisted tunneling to create thermopower SAPS_{AP} depends on the difference between the size Π↑,↓\Pi_{\uparrow, \downarrow} of the majority and minority band Fermi surfaces and it is proportional to a temperature dependent factor (kBT/ωD)3/2(k_{B}T/\omega_{D})^{3/2} where ωD\omega_{D} is the magnon Debye energy. The latter factor reflects the fractional change in the net magnetization of the reservoirs due to thermal magnons at temperature TT (Bloch's T3/2T^{3/2} law). In contrast, the contribution of magnon-assisted tunneling to the thermopower SPS_P of a junction with parallel polarizations is negligible. As the relative polarizations of ferromagnetic layers can be manipulated by an external magnetic field, a large difference ΔS=SAP−SP≈SAP∼−(kB/e)f(Π↑,Π↓)(kBT/ωD)3/2\Delta S = S_{AP} - S_P \approx S_{AP} \sim - (k_B/e) f (\Pi_{\uparrow},\Pi_{\downarrow}) (k_BT/\omega_{D})^{3/2} results in a magnetothermopower effect. This magnetothermopower effect becomes giant in the extreme case of a junction between two half-metallic ferromagnets, ΔS∼−kB/e\Delta S \sim - k_B/e.Comment: 9 pages, 4 eps figure
    • …
    corecore