16 research outputs found

    Context-dependence and the development of push-pull approaches for integrated management of <i>Drosophila suzukii</i>

    Get PDF
    Sustainable pest control requires a systems approach, based on a thorough ecological understanding of an agro-ecosystem. Such fundamental understanding provides a basis for developing strategies to manipulate the pest's behaviour, distribution, and population dynamics, to be employed for crop protection. This review focuses on the fundamental knowledge required for the development of an effective push-pull approach. Push-pull is a strategy to repel a pest from a crop, while attracting it toward an external location. It often relies on infochemicals (e.g., pheromones or allelochemicals) that are relevant in the ecology of the pest insect and can be exploited as lure or repellent. Importantly, responsiveness of insects to infochemicals is dependent on both the insect's internal physiological state and external environmental conditions. This context-dependency reflects the integration of cues from different sensory modalities, the effect of mating and/or feeding status, as well as diurnal or seasonal rhythms. Furthermore, when the costs of responding to an infochemical outweigh the benefits, resistance can rapidly evolve. Here, we argue that profound knowledge on context-dependence is important for the development and implementation of push-pull approaches. We illustrate this by discussing the relevant fundamental knowledge on the invasive pest species Drosophila suzukii as an example

    Pheromonal cues deposited by mated females convey social information about egg-laying sites in <i>Drosophila melanogaster</i>

    Get PDF
    Individuals can make choices based on information learned from others, a phenomenon called social learning. How observers differentiate between which individual they should or should not learn from is, however, poorly understood. Here, we showed that Drosophila melanogaster females can influence the choice of egg-laying site of other females through pheromonal marking. Mated females mark territories of high quality food by ejecting surplus male sperm containing the aggregation pheromone cis-11-vaccenyl acetate (cVA) and, in addition, deposit several sex- and species-specific cuticular hydrocarbon (CHC) pheromones. These pheromonal cues affect the choices of other females, which respond by preferentially laying eggs on the marked food. This system benefits both senders and responders, as communal egg laying increases offspring survival. Virgin females, however, do not elicit a change in the egg-laying decision of mated females, even when food has been supplemented with ejected sperm from mated females, thus indicating the necessity for additional cues. Genetic ablation of either a female's CHC pheromones or those of their mate results in loss of ability of mated females to attract other females. We conclude that mated females use a pheromonal marking system, comprising cVA acquired from male ejaculate with sex- and species-specific CHCs produced by both mates, to indicate egg-laying sites. This system ensures information reliability because mated, but not virgin, females have both the ability to generate the pheromone blend that attracts other flies to those sites and a direct interest in egg-laying site quality

    F1 mate preference dataset

    No full text
    Combined data set of F1 mate preference experiment. Sheet #1 ("Key") details the contents of the data found in sheet #2

    Data from: Developmental effects of visual environment on species-assortative mating preferences in Lake Victoria cichlid fish

    No full text
    Local adaptation can be a potent force in speciation, with environmental heterogeneity leading to niche specialization and population divergence. However, local adaption often requires non-random mating in order to generate reproductive isolation. Population divergence in sensory properties can be particularly consequential in speciation, affecting both ecological adaptation and sexual communication. Pundamilia pundamila and Pundamilia nyererei are two closely related African cichlid species that differ in male coloration, blue vs. red. They co-occur at rocky islands in southern Lake Victoria, but inhabit different depth ranges with different light environments. The species differ in colour vision properties and females exert species-specific preferences for blue vs. red males. Here, we investigated the mechanistic link between colour vision and preference, which could provide a rapid route to reproductive isolation. We tested the behavioural components of this link by experimentally manipulating colour perception – we raised both species and their hybrids under light conditions mimicking shallow and deep habitats - and tested female preference for blue and red males under both conditions. We found that rearing light significantly affected female preference: shallow-reared females responded more strongly to P. pundamilia males and deep-reared females favored P. nyererei males - implying that visual development causally affects mate choice. These results are consistent with sensory-drive predictions, suggesting that the visual environment is key to behavioural isolation of these species. However, the observed plasticity could also make the species barrier vulnerable to environmental change: species-assortative preferences were weaker in females that were reared in the other species’ light condition

    Developmental effects of visual environment on species-assortative mating preferences in Lake Victoria cichlid fish

    Get PDF
    Local adaptation can be a potent force in speciation, with environmental heterogeneity leading to niche specialization and population divergence. However, local adaption often requires nonrandom mating to generate reproductive isolation. Population divergence in sensory properties can be particularly consequential in speciation, affecting both ecological adaptation and sexual communication. Pundamilia pundamila and Pundamilia nyererei are two closely related African cichlid species that differ in male coloration, blue vs. red. They co-occur at rocky islands in southern Lake Victoria, but inhabit different depth ranges with different light environments. The species differ in colour vision properties, and females exert species-specific preferences for blue vs. red males. Here, we investigated the mechanistic link between colour vision and preference, which could provide a rapid route to reproductive isolation. We tested the behavioural components of this link by experimentally manipulating colour perception - we raised both species and their hybrids under light conditions mimicking shallow and deep habitats - and tested female preference for blue and red males under both conditions. We found that rearing light significantly affected female preference: shallow-reared females responded more strongly to P.pundamilia males and deep-reared females favoured P.nyererei males - implying that visual development causally affects mate choice. These results are consistent with sensory drive predictions, suggesting that the visual environment is key to behavioural isolation of these species. However, the observed plasticity could also make the species barrier vulnerable to environmental change: species-assortative preferences were weaker in females that were reared in the other species' light condition

    Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis.

    Get PDF
    Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nanE and genes encoding transport proteins. The transcript levels of these genes can function as indicators of robustness and could aid in selection of fermentation parameters, potentially resulting in more optimal robustness during spray drying

    Effect of pH on final OD.

    No full text
    <p>Boxplots of final optical density (OD<sub>final</sub>) of strains MG1363, IL1403, KF147 and SK11 in fermentations with an initial pH of 6.0 or 6.5.</p
    corecore