2,658 research outputs found
Generalized Transmuted Family of Distributions: Properties and Applications
We introduce and study general mathematical properties of a new generator of continuous distributions with two extra parameters called the Generalized Transmuted Family of Distributions. We investigate the shapes and present some special models. The new density function can be expressed as a linear combination of exponentiated densities in terms of the same baseline distribution. We obtain explicit expressions for the ordinary and incomplete moments and generating function, Bonferroni and Lorenz curves, asymptotic distribution of the extreme values, Shannon and R´enyi entropies and order statistics, which hold for any baseline model. Further, we introduce a bivariate extension of the new family. We discuss the different methods of estimation of the model parameters and illustrate the potential application of the model via real data. A brief simulation for evaluating Maximum likelihood estimator is done. Finally certain characterziations of our model are presented
Coupled Two-Way Clustering Analysis of Gene Microarray Data
We present a novel coupled two-way clustering approach to gene microarray
data analysis. The main idea is to identify subsets of the genes and samples,
such that when one of these is used to cluster the other, stable and
significant partitions emerge. The search for such subsets is a computationally
complex task: we present an algorithm, based on iterative clustering, which
performs such a search. This analysis is especially suitable for gene
microarray data, where the contributions of a variety of biological mechanisms
to the gene expression levels are entangled in a large body of experimental
data. The method was applied to two gene microarray data sets, on colon cancer
and leukemia. By identifying relevant subsets of the data and focusing on them
we were able to discover partitions and correlations that were masked and
hidden when the full dataset was used in the analysis. Some of these partitions
have clear biological interpretation; others can serve to identify possible
directions for future research
Detection of human papillomavirus DNA sequences in oral lesions using polymerase chain reaction
The purpose of the present study was to estimate the frequency of HPV DNA in four groups of oral lesions, including oral squamous cell carcinoma. Sixty paraffin-embedded oral tissue samples were examined for the presence of HPV DNAs using the PCR technique. These specimens were obtained from patients with oral squamous cell carcinoma (OSCC), leukoplakia, oral lichen planus (OLP), and pyogenic granuloma (PG). Consensus primers for L1 region (MY09 and MY11) and specific primers were used for detection of HPV DNA sequences in this study. we detected HPV DNA in 60% (9 out of 15) of OSCCs, 26.7% (4 out of 15) of leukoplakia, 13.3% (2 out of 15) of OLPs, and 6.7% (1 out of 15) of PGs. Statistical analysis showed that the prevalence of HPV in OSCC was significantly higher than other groups (P < 0.05). The frequency of HPV-16 and 18 detection in OSCC samples were 40% and 20%, respectively. The prevalence of these high risk HPVs was significantly higher in OSCC group (P < 0.05). The results of the present study show a successive increase of detection rate of HPV-16 and 18 DNAs from low level in samples of pyogenic granuloma and non-premalignant or questionably premalignant lesions of OLP to premalignant leukoplakia and to OSCC. © 2007 Tehran University of Medical Sciences. All rights reserved
Oral Health: The Need for Both Conventional Microbial and Molecular Characterization
This study aims to consider the microbial distribution in oral disease, as well as gene analysis and expression, in elucidating: 1, the fundamental underpinnings of oral disease, and 2, the potential relationship between oral diseases and systemic health. A key focus is identifying the microbiota associated with oral disease manifestations characterized by both conventional microbiological and molecular methods. Variations in the observed microbial populations characterized by conventional and molecular approaches have been identified for caries, periodontitis, peri-implantitis, and stomatitis. The discovery of therapeutic approaches for oral disease will require comprehensive microbial and genomic analysis. This study evaluated the current state of the relevant microbial and genomic information for several prevalent oral diseases
Fumonisin B1 contamination of cereals and risk of esophageal cancer in a high risk area in Northeastern Iran
Introduction: Fumonisin B1 (FB1) is a toxic and carcinogenic mycotoxin produced in cereals due to fungal infection. This study was conducted to determine FB1 contamination of rice and corn samples and its relationship with the rate of esophageal cancer (EC) in a high risk area in northeastern Iran. Methods: In total, 66 rice and 66 corn samples were collected from 22 geographical subdivisions of Golestan province of Iran. The levels of FB1 were measured for each subdivision by thin layer and high pressure liquid chromatographies. The mean level of FB1 and the proportions of FB1 contaminated samples were compared between low and high EC-risk areas of the province. Results: The mean of FB1 levels in corn and rice samples were 223.64 and 21.59 μ/g, respectively. FB1 contamination was found in 50% and 40.9% of corn and rice samples, respectively. FB1 level was significantly higher in rice samples obtained from high EC-risk area (43.8 μ/g) than those obtained from low risk area (8.93 μ/g) (p-value=0.01). The proportion of FBI contaminated rice samples was also significantly greater in high (75%) than low (21.4%) EC-risk areas (p-value=0.02). Conclusion: We found high levels of FBI contamination in corn and rice samples from Golestan province of Iran, with a significant positive relationship between FB1 contamination in rice and the risk of EC. Therefore, fumonisin contamination in commonly used staple foods, especially rice, may be considered as a potential risk factor for EC in this high risk region
(R1239) A New Type II Half Logistic-G family of Distributions with Properties, Regression Models, System Reliability and Applications
This study proposes a new family of distributions based on the half logistic distribution. With the new family, the baseline distributions gain flexibility through additional shape parameters. The important statistical properties of the proposed family are derived. A new generalization of the Weibull distribution is used to introduce a location-scale regression model for the censored response variable. The utility of the introduced models is demonstrated in survival analysis and estimation of the system reliability. Three data sets are analyzed. According to the empirical results, it is observed that the proposed family gives better results than other existing models
- …