We present a novel coupled two-way clustering approach to gene microarray
data analysis. The main idea is to identify subsets of the genes and samples,
such that when one of these is used to cluster the other, stable and
significant partitions emerge. The search for such subsets is a computationally
complex task: we present an algorithm, based on iterative clustering, which
performs such a search. This analysis is especially suitable for gene
microarray data, where the contributions of a variety of biological mechanisms
to the gene expression levels are entangled in a large body of experimental
data. The method was applied to two gene microarray data sets, on colon cancer
and leukemia. By identifying relevant subsets of the data and focusing on them
we were able to discover partitions and correlations that were masked and
hidden when the full dataset was used in the analysis. Some of these partitions
have clear biological interpretation; others can serve to identify possible
directions for future research