69 research outputs found

    Longitudinal Variations in Antibody Responses against SARS-CoV-2 Spike Epitopes upon Serial Vaccinations

    Get PDF
    The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacted healthcare, the workforce, and worldwide socioeconomics. Multi-dose mono- or bivalent mRNA vaccine regimens have shown high efficacy in protection against SARSCoV- 2 and its emerging variants with varying degrees of efficacy. Amino acid changes, primarily in the receptor-binding domain (RBD), result in selection for viral infectivity, disease severity, and immune evasion. Therefore, many studies have centered around neutralizing antibodies that target the RBD and their generation achieved through infection or vaccination. Here, we conducted a unique longitudinal study, analyzing the effects of a three-dose mRNA vaccine regimen exclusively using the monovalent BNT162b2 (Pfizer/BioNTech) vaccine, systematically administered to nine previously uninfected (naïve) individuals. We compare changes in humoral antibody responses across the entire SARS-CoV-2 spike glycoprotein (S) using a high-throughput phage display technique (VirScan). Our data demonstrate that two doses of vaccination alone can achieve the broadest and highest magnitudes of anti-S response. Moreover, we present evidence of novel highly boosted non-RBD epitopes that strongly correlate with neutralization and recapitulate independent findings. These vaccine-boosted epitopes could facilitate multi-valent vaccine development and drug discovery

    The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma : a systematic review and economic evaluation

    Get PDF
    Objectives: To assess whether open angle glaucoma (OAG) screening meets the UK National Screening Committee criteria, to compare screening strategies with case finding, to estimate test parameters, to model estimates of cost and cost-effectiveness, and to identify areas for future research. Data sources: Major electronic databases were searched up to December 2005. Review methods: Screening strategies were developed by wide consultation. Markov submodels were developed to represent screening strategies. Parameter estimates were determined by systematic reviews of epidemiology, economic evaluations of screening, and effectiveness (test accuracy, screening and treatment). Tailored highly sensitive electronic searches were undertaken. Results: Most potential screening tests reviewed had an estimated specificity of 85% or higher. No test was clearly most accurate, with only a few, heterogeneous studies for each test. No randomised controlled trials (RCTs) of screening were identified. Based on two treatment RCTs, early treatment reduces the risk of progression. Extrapolating from this, and assuming accelerated progression with advancing disease severity, without treatment the mean time to blindness in at least one eye was approximately 23 years, compared to 35 years with treatment. Prevalence would have to be about 3–4% in 40 year olds with a screening interval of 10 years to approach costeffectiveness. It is predicted that screening might be cost-effective in a 50-year-old cohort at a prevalence of 4% with a 10-year screening interval. General population screening at any age, thus, appears not to be cost-effective. Selective screening of groups with higher prevalence (family history, black ethnicity) might be worthwhile, although this would only cover 6% of the population. Extension to include other at-risk cohorts (e.g. myopia and diabetes) would include 37% of the general population, but the prevalence is then too low for screening to be considered cost-effective. Screening using a test with initial automated classification followed by assessment by a specialised optometrist, for test positives, was more cost-effective than initial specialised optometric assessment. The cost-effectiveness of the screening programme was highly sensitive to the perspective on costs (NHS or societal). In the base-case model, the NHS costs of visual impairment were estimated as £669. If annual societal costs were £8800, then screening might be considered cost-effective for a 40-year-old cohort with 1% OAG prevalence assuming a willingness to pay of £30,000 per quality-adjusted life-year. Of lesser importance were changes to estimates of attendance for sight tests, incidence of OAG, rate of progression and utility values for each stage of OAG severity. Cost-effectiveness was not particularly sensitive to the accuracy of screening tests within the ranges observed. However, a highly specific test is required to reduce large numbers of false-positive referrals. The findings that population screening is unlikely to be cost-effective are based on an economic model whose parameter estimates have considerable uncertainty. In particular, if rate of progression and/or costs of visual impairment are higher than estimated then screening could be cost-effective. Conclusions: While population screening is not costeffective, the targeted screening of high-risk groups may be. Procedures for identifying those at risk, for quality assuring the programme, as well as adequate service provision for those screened positive would all be needed. Glaucoma detection can be improved by increasing attendance for eye examination, and improving the performance of current testing by either refining practice or adding in a technology-based first assessment, the latter being the more cost-effective option. This has implications for any future organisational changes in community eye-care services. Further research should aim to develop and provide quality data to populate the economic model, by conducting a feasibility study of interventions to improve detection, by obtaining further data on costs of blindness, risk of progression and health outcomes, and by conducting an RCT of interventions to improve the uptake of glaucoma testing.Peer reviewedPublisher PD

    High Purcell factor generation of indistinguishable on-chip single photons

    Get PDF
    On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission, but this can be significantly degraded in on-chip geometries owing to nearby etched surfaces. A long-proposed solution to improve the indistinguishablility is to use the Purcell effect to reduce the radiative lifetime. However, until now only modest Purcell enhancements have been observed. Here we use pulsed resonant excitation to eliminate slow relaxation paths, revealing a highly Purcell-shortened radiative lifetime (22.7 ps) in a waveguide-coupled quantum dot–photonic crystal cavity system. This leads to near-lifetime-limited single-photon emission that retains high indistinguishablility (93.9%) on a timescale in which 20 photons may be emitted. Nearly background-free pulsed resonance fluorescence is achieved under π-pulse excitation, enabling demonstration of an on-chip, on-demand single-photon source with very high potential repetition rates

    Choosing the target difference and undertaking and reporting the sample size calculation for a randomised controlled trial – the development of the DELTA2 guidance

    Get PDF
    Background A key step in the design of a randomised controlled trial is the estimation of the number of participants needed. The most common approach is to specify a target difference in the primary outcome between the randomised groups and then estimate the corresponding sample size. The sample size is chosen to provide reassurance that the trial will have high statistical power to detect the target difference at the planned statistical significance level. Alternative approaches are also available, though most still require specification of a target difference. The sample size has many implications for the conduct of the study, as well as incurring scientific and ethical aspects. Despite the critical role of the target difference for the primary outcome in the design of a randomised controlled trial (RCT), the manner in which it is determined has received little attention. This article reports the development of the DELTA2 guidance on the specification and reporting of the target difference for the primary outcome in a sample size calculation for a RCT. Methods The DELTA2 (Difference ELicitation in TriAls) project has five components comprising systematic literature reviews of recent methodological developments (stage 1) and existing funder guidance (stage 2), a Delphi study (stage 3), a 2-day consensus meeting bringing together researchers, funders and patient representatives (stage 4), and the preparation and dissemination of a guidance document (stage 5). Results The project started in April 2016. The literature search identified 28 articles of methodological developments relevant to a method for specifying a target difference. A Delphi study involving 69 participants, along with a 2-day consensus meeting were conducted. In addition, further engagement sessions were held at two international conferences. The main guidance text was finalised on April 18, 2018, after revision informed by feedback gathered from stages 2 and 3 and from funder representatives. Discussion The DELTA2 Delphi study identified a number of areas (such as practical recommendations and examples, greater coverage of different trial designs and statistical approaches) of particular interest amongst stakeholders which new guidance was desired to meet. New relevant references were identified by the review. Such findings influenced the scope, drafting and revision of the guidance. While not all suggestions could be accommodated, it is hoped that the process has led to a more useful and practical document. Keywords Target difference Clinically important difference Sample size Guidance Randomised tria

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Genomic assessment of quarantine measures to prevent SARS-CoV-2 importation and transmission

    Get PDF
    Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16–20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement

    Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study

    Get PDF
    Background The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. Methods We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. Findings From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. Interpretation The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. Funding Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society
    corecore