663 research outputs found

    Working memory enhances target detection in the blind hemifield

    Get PDF
    Visual perception can be influenced by the content of working memory. Previous studies have shown this influence can be enough to improve unconscious visual discrimination in healthy participants and conscious visual discrimination in neuropsychological patients with extinction. Here, these findings are extended by examining the effects of holding an object in working memory on unconscious visual perception in a person with hemianopia. The results revealed significantly enhanced detection accuracy when there was an exact match between the colour and orientation of the discrimination target and the item in working memory. However, the facilitatory effect was greatly reduced when only colour or orientation was matched with the item being held in memory. A control experiment confirmed these effects were not due to visual priming. These results are consistent with the proposal that working memory guided perceptual facilitation is driven by signal enhancement. More broadly, the data are interpreted in terms of a biased competition account of visual perception

    The effects of induced optical blur on visual search performance and training

    Get PDF
    Visual Search is a task often used in the rehabilitation of patients with cortical and non-cortical visual pathologies such as visual field loss. Reduced visual acuity is often co-morbid with these disorders and it remains poorly defined how low visual acuity may impact upon a patient’s ability to recover visual function through visual search training. The two experiments reported here investigated whether induced blurring of vision (from 6/15 to 6/60) in a neurotypical population differentially affected various types of feature search task, if there is a minimal acceptable level of visual acuity required for normal search performance, and whether these factors affected the degree to which participants could improve with training. From the results it can be seen that reducing visual acuity did reduce search speed, but only for tasks where the target was defined by shape or size (not colour), and only when acuity was worse than 6/15. Furthermore, searching behaviour was seen to improve with training in all three feature search tasks, irrespective of the degree of blurring that was induced. The improvement also generalised to a non-trained search task indicating that an enhanced search strategy had been developed. These findings have important implications for the use of visual search as a rehabilitation aid for partial visual loss, indicating that individuals with even severe comorbid blurring should still be able to benefit from such training

    The Behavioral Effects of tDCS on Visual Search Performance Are Not Influenced by the Location of the Reference Electrode

    Get PDF
    We investigated the role of reference electrode placement (ipsilateral v contralateral frontal pole) on conjunction visual search task performance when the transcranial direct current stimulation (tDCS) cathode is placed over right posterior parietal cortex (rPPC) and over right frontal eye fields (rFEF), both of which have been shown to be causally involved in the processing of this task using TMS. This resulted in four experimental manipulations in which sham tDCS was applied in week one followed by active tDCS the following week. Another group received sham stimulation in both sessions to investigate practice effects over 1 week in this task. Results show that there is no difference between effects seen when the anode is placed ipsi or contralaterally. Cathodal stimulation of rPPC increased search times straight after stimulation similarly for ipsi and contralateral references. This finding does not extend to rFEF stimulation. However, for both sites and both montages, practice effects as seen in the sham/sham condition were negated. This can be taken as evidence that for this task, reference placement on either frontal pole is not important, but also that care needs to be taken when contextualizing tDCS “effects” that may not be immediately apparent particularly in between-participant designs

    Secondary analysis of teaching methods in introductory physics: A 50 k-student study

    Get PDF
    Citation: Von Korff, J., Archibeque, B., Gomez, K. A., Heckendorf, T., McKagan, S. B., Sayre, E. C., . . . Sorell, L. (2016). Secondary analysis of teaching methods in introductory physics: A 50 k-student study. American Journal of Physics, 84(12), 969-974. doi:10.1119/1.4964354Physics education researchers have developed many evidence-based instructional strategies to enhance conceptual learning of students in introductory physics courses. These strategies have historically been tested using assessments such as the Force Concept Inventory (FCI) and the Force and Motion Conceptual Evaluation (FMCE). We have performed a review and analysis of FCI and FMCE data published between 1995 and 2014. We confirm previous findings that interactive engagement teaching techniques are significantly more likely to produce high student learning gains than traditional lecture-based instruction. We also establish that interactive engagement instruction works in many settings, including those with students having a high and low level of prior knowledge, at liberal arts and research universities, and enrolled in both small and large classes. (C) 2016 Author(s)

    A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome.

    Get PDF
    The identification of the genes associated with chromosomal translocation breakpoints has fundamentally changed understanding of the molecular basis of hematological malignancies. By contrast, the study of chromosomal deletions has been hampered by the large number of genes deleted and the complexity of their analysis. We report the generation of a mouse model for human 5q- syndrome using large-scale chromosomal engineering. Haploinsufficiency of the Cd74-Nid67 interval (containing Rps14, encoding the ribosomal protein S14) caused macrocytic anemia, prominent erythroid dysplasia and monolobulated megakaryocytes in the bone marrow. These effects were associated with defective bone marrow progenitor development, the appearance of bone marrow cells expressing high amounts of the tumor suppressor p53 and increased bone marrow cell apoptosis. Notably, intercrossing with p53-deficient mice completely rescued the progenitor cell defect, restoring common myeloid progenitor and megakaryocytic-erythroid progenitor, granulocyte-monocyte progenitor and hematopoietic stem cell bone marrow populations. This mouse model suggests that a p53-dependent mechanism underlies the pathophysiology of the 5q- syndrome
    corecore