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Abstract:  

  Visual Search is a task often used in the rehabilitation of patients with cortical 

and non-cortical visual pathologies such as visual field loss. Reduced visual acuity is 

often co-morbid with these disorders and it remains poorly defined how low visual 

acuity may impact upon a patient’s ability to recover visual function through visual 

search training. The two experiments reported here investigated whether induced 

blurring of vision (from 6/15 to 6/60) in a neurotypical population differentially 

affected various types of feature search task, if there is a minimal acceptable level of 

visual acuity required for normal search performance, and whether these factors 

affected the degree to which participants could improve with training. From the 

results it can be seen that reducing visual acuity did reduce search speed, but only 

for tasks where the target was defined by shape or size (not colour), and only when 

acuity was worse than 6/15. Furthermore, searching behaviour was seen to improve 

with training in all three feature search tasks, irrespective of the degree of blurring 

that was induced. The improvement also generalised to a non-trained search task 

indicating that an enhanced search strategy had been developed. These findings 

have important implications for the use of visual search as a rehabilitation aid for 

partial visual loss, indicating that individuals with even severe comorbid blurring 

should still be able to benefit from such training.  
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Introduction 

The visual field is the area that can be seen when the eyes are fixating, and a 

visual field defect is any area of blindness within this that can result from damage to 

any part of the primary visual pathway. The primary cause is glaucoma (Ramrattan 

et al., 2001), although there are other ocular pathologies such as macular 

degeneration. The area of blindness is restricted to one half of the visual field in 

homonymous visual field defects, which are the consequence of damage to most 

typically primary visual cortex, followed by optic radiations, the optic tract, and lateral 

geniculate nucleus (Papageorgiou & Tsironi-Malizou, 2017). Regardless of cause, 

visual field defects can result in significant disability and increase the chance of 

falling (Ramrattan et al., 2001) and collisions (Fuhr, Liu, & Kuyk, 2007; Papageorgiou 

et al., 2012; McGwin et al., 2016). This is because the restricted field of view hinders 

many everyday tasks that require efficient searching, including safe navigation, and 

finding items such as when shopping.  

Visual search tasks involve the shifting of attention and scanning of an array 

to decide upon, typically, the presence or absence of a target item (Triesman & 

Gelade, 1980). Search tasks have been proposed as a behavioural treatment for 

various visual field conditions including homonymous visual field defects (e.g., Lane, 

Smith, Ellison & Schenk, 2010), and age related macular degeneration, glaucoma, 

and retinitis pigmentosa for example (e.g., Liu, Kuyk, & Fuhr, 2007; Kuyk, Liu, Elliott, 

& Fuhr, 2010). The aim with such training is to use visual search to encourage 

patients to develop more efficient searching eye-movement strategies, which are 

known to be deficient across these conditions (e.g., Meienberg, Zangemeister, 

Rosenberg, Hoyt & Stark, 1981; Smith, Glen & Crabb, 2012; Van der Stigchel et al., 

2013; Zihl, 1995).  



However, blurring of vision (i.e., reduced visual acuity, (VA)) is a common 

comorbid visual problem for many such patients (Naidoo, Govender, & Holden, 

2014). Despite the availability of optical aids such spectacles and contact lenses to 

treat blurring of vision, many patients remain unable to achieve satisfactory VA 

(Oduntan, 2005; Pascolini & Mariotti, 2012). Therefore, it is important to understand 

the extent to which blur affects searching behaviour, and whether this blurring is a 

factor that affects a participant’s ability to engage successfully with visual search 

training. Knowing the level of VA that is essential to give a maximum training effect 

could enable therapists to provide tailored vision rehabilitation; patients with an 

acceptable level of blurred vision could be provided with search training as it stands, 

whereas perhaps alternatives need to be sought in cases where the blur makes 

training less effective. 

 Studies on the association between visual search and VA have been 

conducted in children from as young as 4 years old (Huurneman & Boonstra, 2014; 

Huurneman, Cox, Vlaskamp, & Boonstra, 2014; Tadin, Nyquist, Lusk, Corn, & 

Lappin, 2012), and in adults up to 80 years old with eye disorders such as amblyopia 

and retinal diseases (Dougherty et al., 2009; Fuhr et al., 2007; Kuyk et al., 2005; Liu 

et al., 2007; Satgunam et al., 2012). It has been demonstrated that blurred vision has 

an adverse impact on visual searching in patients with moderate to profound visual 

impairment (Kuyk et al., 2005; Senger et al., 2017); patients showed prolonged 

search time and increased amplitude of eye-movements which were directly 

proportional to their VA. However, at present no clear recommendation has been 

published about the minimum level of VA that could still allow the execution of 

efficient visual search. Therefore experiment 1 presented here aimed to 



systematically quantify how different degrees of blurred vision affect visual search 

performance.  

With regards to visual search training, Liu et al. (2007) explored the effect of 

training on patients with severe to profound vision loss due to retinal diseases like 

age related macular degeneration and retinitis pigmentosa (<6/60 [able to see items 

at 6 metres that can be normally seen at 60 metres] best corrected visual acuity, 

and/or <20 degrees visual field). The study demonstrated that training could 

significantly improve visual search speed in severely visually impaired participants, 

and the gains were persistent for at least 1 month after training ended. Furthermore, 

the efficiency of the training was comparable between those with visual impairment 

and healthy age-matched controls demonstrating that poor vision does not prevent 

participants from being able to acquire improvements in search behaviour. However, 

the study did not include participants with minimal or moderate vision loss, and 

furthermore the stimuli used were high contrast resulting in an easy to perform task. 

Thus, as the authors themselves noted, it would be interesting to observe 

performance on more difficult search tasks to see how this affects behaviour, as well 

as whether improvements generalise. Previous studies with normally sighted 

participants have found contradictory findings with respect to whether visual search 

practice transfers across stimuli (Ahissar & Hochstein 1993, 1996; Sireteanu & 

Rettenbach, 1995; Ellison & Walsh, 1998). Therefore, the aim of the second 

experiment presented here was to quantify the conditions under which visual search 

training can have a positive effect, examining differing levels of VA and different 

tasks, as well as transfer.  

The experiments reported here utilize feature search tasks, where the target 

differs to the distractors according to one characteristic, as these have been trialed 



for the rehabilitation of various visual field defects. For instance the training used by 

Liu et al. (2007) and Kuyk et al. (2010) for patients with ocular pathology visual 

impairments involved a size-based feature search task where participants had to 

search for a square that was twice as large as the other distractors, and decide if it 

was present or absent. Although one of the tasks used here is a size-based task, two 

other feature searches are also used; colour and shape search. The three tasks are 

all used as part of Durham Reading and Exploration (DREX), a visual search training 

developed for people with homonymous visual field defects 

(www.durham.ac.uk/drex/). As with the Liu et al. (2007) and Kuyk et al. (2010) 

studies, participants in the second experiment reported here completed the training 

across five daily sessions. Although in the current study participants did complete 

more trials per day (600 as opposed to 405), this is fewer trials per task type (200). 

The number of trials per task had to be balanced with overall training time to ensure 

that participants did not become too fatigued.  

 

Experiment 1 

Method 

Participants. A total of 80 volunteers (16 males, 64 females) aged between 

18 and 52 years (mean age = 21.35 years; SD = 4.84) were recruited from Durham 

University, and all participants provided informed consent in accordance with the 

Declaration of Helsinki. All participants were either emmetropes (presenting vision of 

6/6) or had corrected-to-normal vision (6/6 or better when tested). None of the 

participants reported having any history of progressive systemic or ocular pathology, 

or any cognitive dysfunction. Participants were asked about their knowledge about 

http://www.durham.ac.uk/drex/


their current spectacle prescription and/or visual acuity if applicable. Overall, 40 

participants did not wear any refractive correction whilst 40 participants wore 

spectacles/contact lenses. 

Design. In this mixed design study, participants were randomly assigned to 

one of four optical blur conditions: no blur (VA > 6/6), mild blur (VA = 6/15), moderate 

blur (VA = 6/30), and severe blur (VA = 6/60). Each participant completed three 

different visual search tasks with their vision blurred according to their assigned 

group. The primary outcome measure was the mean response time recorded for 

each task. Ethical approval was obtained from the Psychology department ethics 

committee at Durham University.  

Stimuli and Procedure. Vision testing and manipulation. Near distance VA 

was measured using an ETDRS 2000 series chart at 40 cm. Uncorrected vision 

testing (e.g., without glasses or contact lenses) was completed monocularly by all 

participants and VA was recorded as 6-meter Snellen equivalent. Optical lenses 

where then used (if necessary) to adjust the participant’s VA so that it was in 

accordance with the blur condition to which they had been assigned. In all instances, 

participants started with their uncorrected vision and wore a trial frame in which 

optical lenses were then placed. In cases where participants had emmetropia, a high 

diopter power of plus lens was used initially (blurring up to 6/60) to avoid participants 

memorising the chart letters in the subsequent acuity lines. The diopter power was 

then reduced using an estimated method until the desired VA level was achieved. 

The eye was blurred monocularly so that both eyes had the same level of induced 

VA. In cases with participants with ametropia (unaided < 6/6), if the unaided VA was 

the same as their assigned group then no visual acuity manipulation was done and 

blank lenses inserted into the frame. If required, their unaided VA was further blurred 



or partially corrected using plus or minus lenses until the desired VA was achieved 

for the group to which they were allocated. 

Visual search tasks. Participants were asked to complete six blocks of trials: 

two blocks for each of three search tasks (colour, size, and shape). The order of the 

tasks was counterbalanced across participants and testing was done under normal 

room illumination. While completing the tests, participants placed their head on a 

chin rest to minimise head movements and maintain the test distance of 57.5 cm. 

Participants were instructed to perform all tests as accurately and as quickly as 

possible.  

E-Prime 2.0 (Psychology Software Tools, Inc., Pittsburgh, PA) was used to 

create the visual search tasks, which were displayed on a 16-inch colour monitor 

such that the display subtended 32.5° horizontally and 24.5° vertically. The tasks 

were feature visual search tasks, where the target was defined by only colour, size, 

or shape; participants were not looking for a pre-defined target (e.g., the letter ‘M’) 

but rather the presence of an odd one out (see Figure 1 for examples). All items 

were presented on a black background, and consisted of four possible letters (E, A, 

X, and M) in four possible colours (cyan, magenta, red, yellow), the combination of 

which was randomised. 24 point font was used for all of the items in the colour and 

shape tasks, and in the size tasks there was always a 10 point difference between 

the distractors (10 – 16 point) and the target (20 – 26 point). The items in the array 

were always non-overlapping and the location was random, and all distractor items 

were identical on any given trial. The number of items (set-size) in each search array 

was 4, 8, or 12, and there were an equal number of trials for each set-size. Half of 

the trials were target-present trials, and the other half were target-absent trials. The 

tasks consisted of 240 trials each, which were divided equally into two blocks. Each 



trial began with a central fixation point (white cross), which was presented for 500ms. 

The arrays followed immediately and were presented for 5000ms, or until the 

participant made a response. Participants were required to press 1 to indicate the 

presence of the target, and 2 if they thought it was absent.  

 

{Insert Figure 1} 

  

 

Statistical Analyses. Analyses concentrated on the mean response time 

(RT) for correct target-present trials, with data from trials where the response was 

incorrect and outliers (SD values beyond calculated upper and lower quartile 

boundaries) removed. A (3 × 3) × 4 mixed model ANOVA was conducted to 

investigate the interaction between Task (colour, size, and shape), Set-size (4, 8, 

and 12 items), and Group (no blur, mild blur, moderate blur, and severe blur). The 

sphericity of all repeated measures effects was tested using Mauchly's test; the data 

were normal unless otherwise stated, and the Greenhouse-Geisser adjustment was 

used as required. Post-hoc Bonferroni pairwise comparisons were performed when 

necessary to explore interactions.  

 

Results  

 The mean accuracy was above 91% in all conditions and there were no 

significant differences between conditions (p ≥ .122). With respect to RT, the 3 

(Task: colour, size and shape) × 3 (Set-size: 4, 8 and 12) × 4 (Group: no blur, mild 

blur, moderate blur, and severe blur) mixed model ANOVA revealed a statistically 



significant interaction between Task, Set-size and Group (F(12,304) = 2.01, p = .023). 

The analysis was therefore broken down to investigate each task.  

Colour search task. The 3 (Set-size: 4, 8, and 12) × 4 (Group: no blur, mild 

blur, moderate blur, and severe blur) mixed model ANOVA revealed no significant 

effect of Set-size (F(2,152) = 1.52, p = .222). Search rate slopes can be calculated 

using the following formula: (y2-y1/x2-x1), and the mean search rate slope for the 

colour task was 1.51 ms/item (see Table 1 for the search rate slope of each Group). 

There was also a non-significant effect of Group (F(3,76) = 2.68, p = .053), and no 

signficant interaction between Set size and Group (F(6,152) = 1.54, p = .170; see 

Figure 2a).   

Size search task. The 3 (Set-size: 4, 8, and 12) × 4 (Group: no blur, mild blur, 

moderate blur, and severe blur) mixed model ANOVA revealed a main effect of Set-

size (F(2,152) = 54.86, p < .001); as the set-size increased, the mean RT increased 

(Figure 2b), and the mean search rate slope was 9.13 ms/item (see Table 1 for the 

search rate slope of each Group). The main effect of Group was significant (F(3,76) = 

5.02, p = .003), such that the mean RT increased as the severity of blur increased. 

There was a non-significant interaction between Set-size and Group (F(6,152) = 2.00, p 

= .069).  

Shape search task. The 3 (Set-size: 4 items, 8 items and 12 items) × 4 

(Group: no blur, mild blur, moderate blur and severe blur) mixed model ANOVA 

revealed a significant effect of Set-size (F(2,152) = 62.11, p < .001); as set-size 

increased so too did the mean RT (Figure 2c). The mean search rate slope for the 

shape task was 20.94 ms/item. There was also a significant effect of Group (F(3,76) = 

38.72, p < .001); participants from the no blur group performed significantly faster 



than those from the moderate blur or severe blur groups (p ≤ 0.007), however no 

significant differences in the mean search time were found in other blur condition 

comparisons (p ≥ 0.647).  

 

{Insert Figure 2} 

 

 A significant interaction between Set-size and Group (F(6,152) = 3.04, p = .008) 

was also observed. To investigate this interaction further, mean search rate slopes 

for each level of blur were calculated (see Table 1). These were compared using a 

single-factor between-subject ANOVA, which revealed that there was a significant 

effect of Group, F(3,79) = 4.567, p = 0.005; participants from the no blur group had a 

significantly shallower search slope compared to the severe blur group (p = 0.003). 

Other group comparisons were not significantly different (p > 0.239).  

 

{Insert Table 1} 

  

Interim Discussion 

The results of the first experiment show that blurred vision significantly affects 

visual search performance, however, this is task dependant, with the colour search 

task being relatively unaffected by the extent of the blur. In other words, participants 

in the blurring groups were equally fast on the colour search task as the no blurred 

controls across all set-sizes, but become slow and inefficient on the size and shape 

search tasks with increasing blur. However, there is an exception for those with 6/15 

acuity; they can perform very well in all visual search tasks showing that the visual 



search results obtained from people with minimal blurred vision can still be 

considered as an efficient search.  

  In summary, this experiment revealed that visual search speed reduces in 

size and shape search tasks as the severity of blurred vision increases, indicating a 

serious disability which could limit the execution of most activities that require 

efficient visual search like navigation and finding objects. Therefore the next 

experiment will investigate if this impaired visual search due to blurred vision can be 

improved via search training. 

The results of this experiment showed that there was no significant difference 

in mean response time between mild and moderate blur groups in all search tasks. 

Therefore, in the subsequent experiment a low blur (6/24) group was used, which 

was chosen as the mid-point VA between 6/15 (mild blur) and 6/30 (moderate blur). 

 

Experiment 2 

Method 

Participants. Thirty volunteers (12 males, 18 females) aged between 18 and 

35 years (mean age = 23.5 years; SD = 0.90) were recruited from Durham 

University. The inclusion criteria were the same as Experiment 1. In total, 15 

participants did not wear any refractive correction, whilst 15 participants wore 

spectacles/contact lenses. All participants provided informed consent to participate in 

the study in accordance with the Declaration of Helsinki. 

Design. In this mixed design study, participants completed vision testing and 

pre-training assessments before performing five sessions of search training, and 



then repeating the same assessments in a post-training session. The primary 

outcome measures were the mean RT and accuracy of the colour, size, and shape 

feature search tasks, as well as a non-trained find-the-number search task. Ethical 

approval was obtained from the Psychology department ethics committee at Durham 

University.  

Stimuli.  Vision testing and manipulation. The methods used for testing near 

vision and allocating participants into the experimental groups were identical with 

experiment 1, except that this experiment only included three experimental groups: 

no blur (6/6), low blur (6/24), and severe blur (6/60).  

Pre- and post-training assessments.  

1) Colour, size and shape search tasks: these three tasks were the same as 

used in experiment 1.  

2) Find-the-number search task: the task was programmed using E-Prime 2.0 

(Psychology Software Tools, Inc., Pittsburgh, PA). Participants had to scan 

an array of randomly displayed, non-overlapping items for a target (a 

number between 1 and 9). The distractors were non-numerical symbols 

(e.g. #, @, %, }, $, £, ?), and on half of the trials there were three 

distractors, and the other half of trials contained seven distractors. The 

distractors and target were 24-point size, white and presented on a black 

background (see Figure 3), with the array displayed on a 15.6-inch laptop 

monitor. Once participants had identified the target they had to indicate 

their response as quickly as possible by pressing spacebar followed by the 

corresponding number key indicating the number seen. The task consisted 



of 8 practice and 40 test trials. Only trials in which the correct response 

was provided, were used for the mean RT calculation.  

 

{Insert Figure 3} 

 

Training. The search training consisted of three visual search tasks where the 

target item and distribution of trials were the same as the ones used in the colour, 

size and shape search tasks. However, the number of items (set-size) in each array 

was 10 (including one target), and it remained constant throughout the training. The 

training was divided into five sessions and each session consisted of two blocks of 

colour, size and shape tasks. Every block comprised 100 trials, thus making 3000 

trials in total across the sessions.  

Procedure. After testing VA, participants were asked to complete all four 

assessment tasks under the VA condition they had been allocated to. A break 

between tasks was given if required. Participants then completed five sessions of 

search training; one session per day across the course of a week, with each session 

lasting approximately 30 minutes. They then repeated the assessment tasks in one 

final session. The assessments and training were done under normal room 

illumination and the chin rest was used throughout the assessments and training 

sessions to maintain the head position and testing distance. Participants were 

instructed to perform the tasks as accurately and as quickly as possible. A feedback 

screen summarising their performance and accuracy was displayed at the end of 

each assessment or training block. 

Statistical Analyses. Analyses for the assessment and training feature 

search tasks were restricted to correct target-present responses such that incorrect 



responses and outliers (SD values beyond calculated upper and lower boundaries) 

were removed. Paired-samples t-tests were performed on the training data, 

comparing performance at session 1 with session 5 for each blur condition 

separately. A (3 × 2) × 3 mixed model ANOVA was conducted for each of the colour, 

size and shape search tasks, with the factors Set-size (4 items, 8 items and 12 

items), Session (pre- and post-training) and Group (no blur, low blur and severe 

blur). A 2 × 3 mixed model ANOVA was conducted for the find-the-number search 

task with the factors Session (pre- and post-training) and Group (no blur, low blur 

and severe blur). The sphericity of all repeated measures effects was tested using 

Mauchly's test; the data were normal unless otherwise stated, and the Greenhouse-

Geisser adjustment was used as required. In addition, post-hoc Bonferroni pairwise 

comparisons were performed if necessary.  

 

Results  

 Training 

 The training data was collapsed across the three training tasks, and the mean 

RT (target-present condition) for each training session was calculated for each blur 

group (See Figure 4). 

 

{Insert Figure 4} 

 

 Overall, the mean RT decreased in the second training session (T2) relative to 

the first (T1), and then reduced consistently across the five training sessions, except 

for a slight increase of the mean RT for the no blur and low blur groups during the 



fourth training session (T4; see Figure 4). The decrease in mean RT in T5 relative to 

T1 for no blur, low blur and severe blur groups were 70.76ms, 104.26ms, and 

128.58ms, which represents a significant improvement across the course of the 

training of 10.8% (t(9) = 2.49, p = .034), 13.1% (t(9) = 4.07, p = .003) and 14.7% (t(9) = 

3.58, p = .006) respectively.  

 

Measures of improvement: feature search tasks 

 Mean accuracy was above 94% in all conditions for all tasks and there were 

no significant differences between conditions (p ≥ 0.197).  

Colour search task 

 The [3 (Set-size: 4 items, 8 items and 12 items) × 2 (Session: pre- and post-

training)] × 3 (Group: no blur, low blur and severe blur) mixed model ANOVA on the 

mean RT revealed a significant effect of Session (F(1,27) = 65.27, p < .001); search 

speed was significantly faster post-training compared to pre-training (see Figure 5a). 

The remaining main effects and interactions were all non-significant (p > .175), 

including Set Size; the mean search rate slope was 0.50 ms/item.  

 

{Insert Figure 5} 

 

Size search task 

 The [3 (Set-size: 4 items, 8 items and 12 items) × 2 (Session: pre- and post-

training)] × 3 (Group: no blur, low blur and severe blur) mixed model ANOVA on the 

mean RT revealed significant effects of Session (F(1,27) = 65.17, p < .001). As can be 



seen in Figure 5b, the search speed was significantly faster post-training compared 

to pre-training. There was also a significant effect of Set-size (F(2,54) = 53.97, p < 

.001); RT was slower as the number of items displayed increased. The mean RT for 

4 item displays was 660.47ms (SD: 53.27) and for 12 items it was 719.37ms (SD: 

58.82), and the mean search rate slope was 8.78 ms/item. There was no significant 

effect of Group and interactions were all non-significant (p > .057).  

Shape search task 

 The [3 (Set-size: 4 items, 8 items and 12 items) × 2 (Session: pre- and post-

training)] × 3 (Group: no blur, low blur and severe blur) mixed model ANOVA on the 

mean RT revealed a significant effect of Session (F(1,27) = 93.24, p < .001), with 

participants faster after training (see Figure 5c). There was also a significant effect of 

Set-size, (F(2,54) = 45.47, p < .001); mean RT increased with increasing set-size from 

880.80ms (SD: 89.27) for 4 items, up to 972.47ms (SD: 101.92) for 12 items, and the 

mean search rate slope was 13.93 ms/item.  The main effect of Group was also 

significant (F(2,27) = 13.20, p < .001); mean RT was significantly higher in the low (p = 

.010) and severe (p < .001) blur groups compared to the no blur group. The mean 

RT between the low and severe blur groups was not significantly different (p = .228).   

There were significant interactions between Set-size and Group (F(4,54) = 3.56, 

p = .012), and Session and Group (F(2,27) = 3.43, p = 0.047), but no significant 

interactions between Set-size and Session (F(2,54) = 2.82, p = .068), and Set-size, 

Session and Group (F(4,54) = 0.49, p = 0.740) were found. To investigate the 

significant interaction effects for the shape search task, the mean search slope was 

calculated for each session and group (see Figure 6).  

 



{Insert Figure 6} 

 

A 2 (Session: pre- and post-training) × 3 (Group: no blur, low blur and severe 

blur) mixed model ANOVA was conducted on the mean search slope data, and 

revealed significant effects of Session (F(1,27) = 7.04, p = .013) and Group (F(2,27) = 

5.52, p = .010); the mean search slope significantly reduced after the training, and 

the severe blur group experienced a significantly greater decrease in the search 

slope relative to the no blur group (p = .010). However, there were no interactions 

between Session and Group (F(2,27) = 0.663, p = .523).  

 

Transfer measure: find-the-number search task 

 The 2 (Session: pre- and post-training) × 3 (Group: no blur, low blur and 

severe blur) mixed model ANOVA on mean RT revealed a main effect of Session 

(F(1,27) = 6.47, p = .017); the mean RT decreased after training (see Table 2). There 

was also a significant effect of Group (F(2,27) = 34.16, p < .001); RT was fastest in the 

no blur group and slowest in the severe blur group (Table 2). There was no 

interaction between Session and Group (F(2,27) = 0.77, p = .475). The calculated 

mean improvement in RT was 7.19% (SD = 8.8) in the no blur group, 14.62% (SD = 

18.9) in the low blur group, and 9.75% (SD = 24.0) in the severe blur group.  

A 2 (Session: pre- and post-training) × 3 (Group: no blur, low blur and severe 

blur) mixed model ANOVA was also conducted on mean accuracy data. There was a 

main effect of Session (F(1,27) = 10.93, p = .003); mean accuracy increased after 

training. There was also a significant effect of Group (F(2,27) = 6.24, p = .006); 

accuracy was highest in the no blur group and lowest in the severe blur group (see 



Table 2). A significant interaction between Session and Group was also observed 

(F(2,27) = 5.16, p = .013). Post-hoc comparisons revealed that accuracy significantly 

increased after training for the severe blur group (p = .008; see Table 2), and 

remained unchanged in the other groups.   

 

{Insert Table 2} 

 

Discussion 

 In line with previous research, the results demonstrate that reduced VA can 

significantly impair visual search performance (Dougherty et al., 2009; Fuhr et al., 

2007; Huurneman & Boonstra, 2014; Huurneman et al., 2014; Kuyk et al., 2005; Liu 

et al., 2007; Satgunam et al., 2012; Senger et al., 2017; Tadin et al., 2012). 

Specifically, increasing blur from 6/30 (moderate blur) to 6/60 (severe blur) had a 

marked effect on the speed, but not the accuracy, of visual search for size and 

shape feature tasks. VA did not however have a significant effect on performance of 

a colour-based feature task. This is the first study to show that the nature of the task 

can determine the impact that blurring has on search, and that colour is a 

characteristic that is capable of withstanding reduced VA.  

The reason for the poor visual search performance in the shape and size 

tasks is likely due to reduced saliency of visual features that comes with blurring of 

vision. Earlier studies reported that when the shape information is degraded as a 

result of blur, a colour cue is more meaningful and helpful in visual search (Markoff, 

1972) and object recognition (Wurm, Legge, Isenberg, & Luebker, 1993). Markoff 



(1972) conducted a study by blurring black-and-white and colour slides displaying 

specific targets, like a human or a jeep, that were hidden in real-world backgrounds. 

For the colour slides, reaction time was shorter compared to the black-and-white 

slides, and the advantage of colour over black-and-white performance increased with 

the amount of blur. In the present study, blurring was uniformly distributed 

throughout the display, affecting both target and distractors equally. As the saliency 

of stimuli gradually reduces, the target which has a different shape appears less 

distinguishable than its homogeneous, blurred distractors thereby diminishing the 

pop-out characteristic resulting in more difficult search. Consistent with the 

information degradation hypothesis, it has been shown that participants in lower VA 

groups perform worse on tests designed to evaluate executive function, perceptual 

reasoning, visual search, and processing speed (Bertone, Bettinelli, & Faubert, 2007; 

Skeel et al., 2003).   

 The visual search mechanism underlying the effects of blurring in the size and 

shape search tasks remains unclear. The predicted normal strategy in feature search 

tasks is parallel searching (search slope < 10ms/item), whereby the array of items is 

searched simultaneously and the target easily recognised in a ‘pop out’ manner 

(Treisman & Gelade, 1980). The colour task was performed in parallel regardless of 

the amount of blur. Conversely, for the size and shape tasks the search strategy 

became less efficient (steeper slope) as blur increased. When a search slope 

exceeds 10 ms/item it is regarded as indicating a serial search strategy, whereby 

participants examine each item in turn until one item that is perceived as the target is 

found. As the discriminability between items decreases either through item features 

or reduced VA, it would seem more serial search strategies are employed to retain 

accuracy in these tasks. As size and shape are more sensitive to blur they 



demonstrated this pattern, whilst colour tasks were relatively spared by this strategic 

change.  

 The results of experiment 2 showed that irrespective of visual blurring, search 

performance can significantly improve after training. The mean search improvement 

obtained in the training itself was actually slightly higher in the blurring groups 

(14.7% for severe, and 13.1% for low) than the no blurring group (10.8%). It seems 

likely that this was due to the baseline search speed in the blurring groups being 

slower relative to the no blurring group. No blur participants therefore had less 

opportunity to gain as much improvement across the course of the training, a 

phenomenon not uncommon in the literature (see Liu et al., 2007). Examining the 

performance across all five sessions of training, the mean RT continued to reduce in 

each session, and the magnitude was greater for the more difficult shape search 

task. A significant improvement in speed was observed between the first and final 

sessions regardless of blurring group, and thus it is anticipated that if the training 

session were to be extended that increased benefits could be gained. Performance 

did not appear to plateau after the five sessions of training in the severe blurring 

group, whereas for the no and low blurring group there was minimal change in the 

final three training sessions. This indicates that there is a chance for greater 

improvement in the severe blurring group compared to other groups if the training is 

extended.  

Since the improvements after training were not only seen in the trained tasks, 

but also transferred to a non-trained search task (find-the-number) then one possible 

explanation for the improvements is an enhanced search strategy. Generally, 

normally sighted participants learn to improve their search speed by initially making 

several scanning movements, which are then progressively reduced after extensive 



practice (Ahissar & Hochstein, 1993, 1996; Ellison & Walsh, 1998; Leonards, 

Rettenbach, Nase, & Sireteanu, 2002; Sireteanu & Rettenbach, 1995, 2000; 

Treisman & Gelade, 1980). It is possible that the same modification has been 

adopted by the optically blurred participants. Although in the present study 

participants with blurred vision continued to perform the shape task in a serial 

manner after training, the slope did become shallower indicating that search was 

becoming more efficient. The current experiment involved only 5 training sessions. 

There is little difference in visual search performance between 5 days’ worth of 

training and 8 days’ worth of training in neurotypical participants with normal or 

corrected-to-normal vision (Ellison & Walsh, 1998). However, in the case of induced 

or natural blur it may be that additional training might enable further improvements in 

search efficiency. Future research could explore whether it is possible for 

performance to normalize regardless of the extent of blur, the amount of training 

required for such improvements to be obtained, and importantly recording eye 

movements would help to explain the mechanism of action. 

  The experiments reported here involved neurotypical participants with intact 

visual fields, with induced blurred vision using optical lenses. In order to make 

recommendations about how to use visual search for rehabilitation in practice, it is of 

course important to understand this behaviour in the patient populations of interest. 

Liu et al. (2007) did report improvements in an easy feature task for patients with 

severe visual impairment after training, and the present findings suggest that such 

patients should also still be able to benefit from training using other types of feature 

search, with transfer to other tasks seen. Future research should explore this 

possibility, as well as investigating transfer to more complex tasks, including 

conjunction search for instance.  



 In conclusion, it appears that reduced VA impairs performance on various 

feature visual search tasks, but that participants with blurred vision ranging from mild 

(6/15) to severe (6/60) can still benefit from visual search training. This means that 

visual search training could still be an effective rehabilitation tool for those with visual 

field loss and comorbid blurring.  
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