13 research outputs found

    A topological analysis of void spaces in tungstate frameworks:assessing storage properties for the environmentally important guest molecules and ions: CO<sub>2</sub>, UO<sub>2</sub>, PuO<sub>2</sub>, U, Pu, Sr<sup>2</sup>+, Cs+, CH<sub>4</sub>, and H<sub>2</sub>

    Get PDF
    This is the author accepted manuscript. The final version is available from ACS via http://dx.doi.org/10.1021/acssuschemeng.5b00369The identification of inorganic materials, which are able to encapsulate environmentally important small molecules or ions via host-guest interactions, is crucial for the design and development of next-generation energy sources and for storing environmental waste. Especially sought after are molecular sponges with the ability to incorporate CO2, gas pollutants, or nuclear waste materials such as UO2 and PuO2 oxides or U, Pu, Sr2+ or Cs+ ions. Porous framework structures promise very attractive prospects for applications in environmental technologies, if they are able to incorporate CH4 for biogas energy applications, or to store H2, which is important for fuel cells e.g. in the automotive industry. All of these applications should benefit from the host being resistant to extreme conditions such as heat, nuclear radiation, rapid gas expansion, or wear and tear from heavy gas cycling. As inorganic tungstates are well known for their thermal stability, and their rigid open-framework networks, the potential of Na2O-Al2O3-WO3 and Na2O-WO3 phases for such applications was evaluated. To this end, all known experimentally-determined crystal structures with the stoichiometric formula MaM?bWcOd (M = any element) are surveyed together with all corresponding theoretically calculated NaaAlbWcOd and NaxWyOz structures that are statistically likely to form. Network descriptors that categorize these host structures are used to reveal topological patterns in the hosts, including the nature of porous cages which are able to accommodate a certain type of guest; this leads to the classification of preferential structure types for a given environmental storage application. Crystal structures of two new tungstates NaAlW2O8 (1) and NaAlW3O11 (2) and one updated structure determination of Na2W2O7 (3) are also presented from in-house X-ray diffraction studies, and their potential merits for environmental applications are assessed against those of this larger data-sourced survey. Overall, results show that tungstate structures with three-nodal topologies are most frequently able to accommodate CH4 or H2, while CO2 appears to be captured by a wide range of nodal structure types. The computationally generated host structures appear systematically smaller than the experimentally determined structures. For the structures of 1 and 2, potential applications in nuclear waste storage seem feasible.J. M. C. is indebted to the Fulbright Commission for a UK-US Fulbright Scholar Award hosted by Argonne National Laboratory where work done was supported by DOE Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

    Reprocessing with GANEX:Methodology for Ligand Radiation Tolerance Testing

    Get PDF
    Results demonstrating the methodology for testing the radiation tolerance of organic ligands are presented. A high activity sealed source was used to irradiate samples which were sequentially removed and analysed using a sensitive mass spectrometer. The degradation of a candidate ligand for a new reprocessing process “GANEX” was found to be around 50% after 567 kGy exposure to gamma from Cs-137.<br/

    Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction

    Get PDF
    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials

    Topological Analysis of Void Space in Phosphate Frameworks: Assessing Storage Properties for the Environmentally Important Guest Molecules and Ions: CO<sub>2</sub>, H<sub>2</sub>O, UO<sub>2</sub>, PuO<sub>2</sub>, U, Pu, Sr<sup>2+</sup>, Cs<sup>+</sup>, CH<sub>4</sub>, and H<sub>2</sub>

    No full text
    The entrapment of environmentally important materials to enable containment of polluting wastes from industry or energy production, storage of alternative fuels, or water sanitation, is of vital and immediate importance. Many of these materials are small molecules or ions that can be encapsulated via their adsorption into framework structures to create a host–guest complex. This is an ever-growing field of study and, as such, the search for more suitable porous materials for environmental applications is fundamental to progress. However, many industrial areas that require the use of adsorbents are fraught with practical challenges, such as high temperatures, rapid gas expansion, radioactivity, or repetitive gas cycling, that the host material must withstand. Inorganic phosphates have a proven history of rigid structures, thermal stability, and are suspected to possess good resistance to radiation over geologic time scales. Furthermore, various experimental studies have established their ability to adsorb small molecules, such as water. In light of this, all known crystal structures of phosphate frameworks with meta- (P<sub>3</sub>O<sub>9</sub>) or ultra- (P<sub>5</sub>O<sub>14</sub>) stoichiometries are combined in a data-mining survey together with all theoretically possible structures of Ln<i><sub>a</sub></i>P<i><sub>b</sub></i>O<i><sub>c</sub></i> (where <i>a</i>, <i>b</i>, <i>c</i> are any integer, and Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, or Tm) that are statistically likely to form. Topological patterns within these framework structures are used to assess their suitability for hosting a variety of small guest molecules or ions that are important for environmental applications: CO<sub>2</sub>, H<sub>2</sub>O, UO<sub>2</sub>, PuO<sub>2</sub>, U, Pu, Sr<sup>2+</sup>, Cs<sup>+</sup>, CH<sub>4</sub>, and H<sub>2</sub>. A range of viable phosphate-based host–guest complexes are identified from this data-mining and pattern-based structural analysis. Therein, distinct topological preferences for hosting such guests are found, and metaphosphate stoichiometries are generally preferred over ultraphosphate configurations

    Topological Analysis of Void Spaces in Tungstate Frameworks: Assessing Storage Properties for the Environmentally Important Guest Molecules and Ions: CO<sub>2</sub>, UO<sub>2</sub>, PuO<sub>2</sub>, U, Pu, Sr<sup>2+</sup>, Cs<sup>+</sup>, CH<sub>4</sub>, and H<sub>2</sub>

    No full text
    The identification of inorganic materials, which are able to encapsulate environmentally important small molecules or ions via host–guest interactions, is crucial for the design and development of next-generation energy sources and for storing environmental waste. Especially sought after are molecular sponges with the ability to incorporate CO<sub>2</sub>, gas pollutants, or nuclear waste materials such as UO<sub>2</sub> and PuO<sub>2</sub> oxides or U, Pu, Sr<sup>2+</sup>, or Cs<sup>+</sup> ions. Porous framework structures promise very attractive prospects for applications in environmental technologies, if they are able to incorporate CH<sub>4</sub> for biogas energy applications or to store H<sub>2</sub>, which is important for fuel cells, e.g., in the automotive industry. All of these applications should benefit from the host being resistant to extreme conditions such as heat, nuclear radiation, rapid gas expansion, or wear and tear from heavy gas cycling. As inorganic tungstates are well known for their thermal stability and their rigid open-framework networks, the potential of Na<sub>2</sub>O–Al<sub>2</sub>O<sub>3</sub>–WO<sub>3</sub> and Na<sub>2</sub>O–WO<sub>3</sub> phases for such applications was evaluated. To this end, all known experimentally determined crystal structures with the stoichiometric formula M<sub>a</sub>M′<sub>b</sub>W<sub>c</sub>O<sub>d</sub> (M = any element) are surveyed together with all corresponding theoretically calculated Na<sub>a</sub>Al<sub>b</sub>W<sub>c</sub>O<sub>d</sub> and Na<sub><i>x</i></sub>W<sub><i>y</i></sub>O<sub><i>z</i></sub> structures that are statistically likely to form. Network descriptors that categorize these host structures are used to reveal topological patterns in the hosts, including the nature of porous cages, which are able to accommodate a certain type of guest; this leads to the classification of preferential structure types for a given environmental storage application. Crystal structures of two new tungstates NaAlW<sub>2</sub>O<sub>8</sub> (<b>1</b>) and NaAlW<sub>3</sub>O<sub>11</sub> (<b>2</b>) and one updated structure determination of Na<sub>2</sub>W<sub>2</sub>O<sub>7</sub> (<b>3</b>) are also presented from in-house X-ray diffraction studies, and their potential merits for environmental applications are assessed against those of this larger data-sourced survey. Overall, results show that tungstate structures with three-nodal topologies are most frequently able to accommodate CH<sub>4</sub> or H<sub>2</sub>, while CO<sub>2</sub> appears to be captured by a wide range of nodal structure types. The computationally generated host structures appear systematically smaller than the experimentally determined structures. For the structures of <b>1</b> and <b>2</b>, potential applications in nuclear waste storage seem feasible

    An investigation of the reaction of uranium with nitrogen - A thermogravimetric analysis study

    No full text
    In this work, the heating corrosion reaction of uranium with dry air and with dry nitrogen gas was investigated. Metallic uranium samples of different specific surface area and mass were reacted in a thermogravimetric analysis system at temperature ramping from 323 K to 1273 K at 15 K.min −1 . Ignition was achieved during all heating profiles of the samples reacting with air, with the reported ignition temperature decreasing with increasing specific surface area. Heating cycles were conducted for the uranium and dry nitrogen gas system to investigate if ignition could be attained. These experiments were conducted by varying the specific surface area, sample mass, initial oxide thickness, nitrogen flow rate, and heating ramp rate. None of these experiments showed signs of clear ignition under dry nitrogen. It is hence suggested that uranium ignition under a dry nitrogen atmosphere is not readily attainable and would require a combination of extreme conditions, such as high heating ramp rate for a non-oxidised sample of high surface area and mass
    corecore