69 research outputs found

    Bulk and surface electron dynamics in a p-type topological insulator SnSb2Te4

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.Time-resolved two-photon photoemission was used to study the electronic structure and dynamics at the surface of SnSb2Te4, a p-type topological insulator. The Dirac point is found 0.32±0.03 eV above the Fermi level. Electrons from the conduction band minimum are scattered on a time scale of 43±4 fs to the Dirac cone. From there they decay to the partly depleted valence band with a time constant of 78±5 fs. The significant interaction of the Dirac states with bulk bands is attributed to their bulk penetration depth of ∼3 nm as found from density functional theory calculations.We acknowledge partial support from the Basque Country Government, Departamento de Educacion, Universidades e Investigacion (Grant No. IT-366-07), the Spanish Ministerio de Ciencia e Innovacion (Grant No. FIS2010-19609-C02-00), the Ministry of Education and Science of Russian Federation (Grant No. 2.8575.2013), the Russian Foundation for Basic Research (Grant No. 13-02-12110_ofi_m), and Science Development Foundation under the President of the Republic of Azerbaijan [Grant No. EIF-2011-1(3)-82/69/4-M-50].Peer Reviewe

    Response of the topological surface state to surface disorder in TlBiSe2_2

    Get PDF
    Through a combination of experimental techniques we show that the topmost layer of the topo- logical insulator TlBiSe2_2 as prepared by cleavage is formed by irregularly shaped Tl islands at cryogenic temperatures and by mobile Tl atoms at room temperature. No trivial surface states are observed in photoemission at low temperatures, which suggests that these islands can not be re- garded as a clear surface termination. The topological surface state is, however, clearly resolved in photoemission experiments. This is interpreted as a direct evidence of its topological self-protection and shows the robust nature of the Dirac cone like surface state. Our results can also help explain the apparent mass acquisition in S-doped TlBiSe2_2.Comment: 16 pages, 5 figure

    Interplay of surface and Dirac plasmons in topological insulators: the case of Bi2Se3

    Get PDF
    We have investigated plasmonic excitations at the surface of Bi2Se3(0001) via high-resolution electron energy loss spectroscopy. For low parallel momentum transfer q∥, the loss spectrum shows a distinctive feature peaked at 104 meV. This mode varies weakly with q∥. The behavior of its intensity as a function of primary energy and scattering angle indicates that it is a surface plasmon. At larger momenta (q∥∼0.04  Å−1), an additional peak, attributed to the Dirac plasmon, becomes clearly defined in the loss spectrum. Momentum-resolved loss spectra provide evidence of the mutual interaction between the surface plasmon and the Dirac plasmon of Bi2Se3. The proposed theoretical model accounting for the coexistence of three-dimensional doping electrons and two-dimensional Dirac fermions accurately represents the experimental observations. The results reveal novel routes for engineering plasmonic devices based on topological insulators

    On the floating of the topological surface state on top of a thick lead layer: The case of the Pb/Bi2Se3 interface

    Full text link
    The puzzling question about the floating of the topological surface state on top of a thick Pb layer, has now possibly been answered. A study of the interface made by Pb on Bi2Se3 for different temperature and adsorbate coverage condition, allowed us to demonstrate that the evidence reported in the literature can be related to the surface diffusion phenomenon exhibited by the Pb atoms, which leaves the substrate partially uncovered. Comprehensive density functional theory calculations show that despite the specific arrangement of the atoms at the interface, the topological surface state cannot float on top of the adlayer but rather tends to move inward within the substrate.Comment: 9 pages, 5 figure

    Tuning the dirac point position in Bi2Se3(0001) via surface carbon doping

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.Angular resolved photoemission spectroscopy in combination with ab initio calculations show that trace amounts of carbon doping of the Bi2Se3 surface allows the controlled shift of the Dirac point within the bulk band gap. In contrast to expectation, no Rashba-split two-dimensional electron gas states appear. This unique electronic modification is related to surface structural modification characterized by an expansion of the top Se-Bi spacing of approximate to 11% as evidenced by surface x-ray diffraction. Our results provide new ways to tune the surface band structure of topological insulators.This work is supported by the DFG through Priority Program “Topological Insulators (SPP 1666)” and by Science Development Foundation under the President of the Republic of Azerbaijan [Grant No. EIF-2011-1(3)-82/69/4-M-50].Peer Reviewe

    Geometric and electronic structure of the Cs-doped Bi2Se3(0001) surface

    Get PDF
    Using surface x-ray diffraction and scanning tunneling microscopy in combination with first-principles calculations, we have studied the geometric and electronic structure of Cs-deposited Bi2Se3(0001) surface kept at room temperature. Two samples were investigated: a single Bi2Se3 crystal, whose surface was Ar sputtered and then annealed at ∼500∘C for several minutes prior to Cs deposition, and a 13-nm-thick epitaxial Bi2Se3 film that was not subject to sputtering and was annealed only at ∼350∘C. In the first case, a considerable fraction of Cs atoms occupy top layer Se atoms sites both on the terraces and along the upper step edges where they form one-dimensional-like structures parallel to the step. In the second case, Cs atoms occupy the fcc hollow site positions. First-principles calculations reveal that Cs atoms prefer to occupy Se positions on the Bi2Se3(0001) surface only if vacancies are present, which might be created during the crystal growth or during the surface preparation process. Otherwise, Cs atoms prefer to be located in fcc hollow sites in agreement with the experimental finding for the MBE-grown sample
    corecore