19 research outputs found

    Photodissociation dynamics of the iodide-uracil (I-U) complex

    Get PDF
    Photofragment action spectroscopy and femtosecond time-resolved photoelectron imaging are utilized to probe the dissociation channels in iodide-uracil (I− ⋅ U) binary clusters upon photoexcitation. The photofragment action spectra show strong I− and weak [U- H]− ion signal upon photoexcitation. The action spectra show two bands for I− and [U- H]− production peaking around 4.0 and 4.8 eV. Time-resolved experiments measured the rate of I− production resulting from excitation of the two bands. At 4.03 eV and 4.72 eV, the photoelectron signal from I− exhibits rise times of 86 ± 7 ps and 36 ± 3 ps, respectively. Electronic structure calculations indicate that the lower energy band, which encompasses the vertical detachment energy (4.11 eV) of I−U, corresponds to excitation of a dipole-bound state of the complex, while the higher energy band is primarily a π-π∗ excitation on the uracil moiety. Although the nature of the two excited states is very different, the long lifetimes for I− production suggest that this channel results from internal conversion to the I− ⋅ U ground state followed by evaporation of I−. This hypothesis was tested by comparing the dissociation rates to Rice-Ramsperger-Kassel-Marcus calculations

    The Impact of Prenatal Nicotine Exposure on Impulsivity and Neural Firing in the Medial Prefrontal Cortex

    Get PDF
    Prenatal nicotine exposure (PNE) is linked to a large number of psychiatric disorders, including attention deficit hyperactivity disorder (ADHD). Current literature suggests that core deficits observed in ADHD reflect abnormal inhibitory control governed by the prefrontal cortex (PFC) of the brain. The PFC is structurally altered by PNE, but it is still unclear how neural firing is affected during tasks that test behavioral inhibition, such as the stop-signal task, or if neural correlates related to inhibitory control are affected after PNE in awake behaving animals. To address these questions, we recorded from single medial PFC (mPFC) neurons in control rats and PNE rats as they performed our stopsignal task. We found that PNE rats were faster for all trial types and were less likely to inhibit the behavioral response on STOP trials. Neurons in mPFC fired more strongly on STOP trials and were correlated with accuracy and reaction time. Although the number of neurons exhibiting significant modulation during task performance did not differ between groups, overall activity in PNE was reduced. We conclude that PNE makes rats impulsive and reduces firing in mPFC neurons that carry signals related to response inhibition

    Rapid Evolution of Coral Proteins Responsible for Interaction with the Environment

    Get PDF
    Christian R. Voolstra is with King Abdullah University of Science and Technology, Shinichi Sunagawa is with the European Molecular Biology Laboratory, Mikhail V. Matz is with UT Austin, Till Bayer is with King Abdullah University of Science and Technology, Manuel Aranda is with King Abdullah University of Science and Technology, Emmanuel Buschiazzo is with University of California Merced, Michael K. DeSalvo is with University of California San Francisco, Erika Lindquist is with the Department of Energy Joint Genome Institute, Alina M. Szmant is with University of North Carolina Wilmington, Mary Alice Coffroth is with State University of New York at Buffalo, Mónica Medina is with University of California Merced.Background -- Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. Methodology/Principal Findings -- We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7% of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineage-specific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. Conclusion/Relevance -- This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals' evolutionary response to global climate change.This work was supported by DEB-1054766 to M.V.M. and National Science Foundation grants IOS-0644438 and OCE-0313708 to M.M., and by a Collaborative Travel Fund to C.R.V. made by King Abdullah University of Science and Technology (KAUST). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    Time-Resolved Dynamics in Iodide-Uracil-Water Clusters upon Excitation of the Nucleobase

    No full text
    The dynamics of iodide-uracil-water (I−·U·H2O) clusters following π-π* excitation of the nucleobase are probed using time-resolved photoelectron spectroscopy (TRPES). Photoexcitation of this cluster at 4.77 eV results in electron transfer from the iodide moiety to the uracil, creating a valence-bound (VB) anion within the cross-correlation of the pump and probe laser pulses. This species can decay by a number of channels, including autodetachment and dissociation to I− or larger anion fragments. Comparison of the energetics of the photoexcited cluster and its decay dynamics with those of the bare iodide-uracil (I−·U) complex provide a sensitive probe of the effects of microhydration on these species

    OBSERVATION OF NEW DYNAMICS IN THE STATE-RESOLVED COLLISIONAL RELAXATION OF HIGHLY EXCITED MOLECULES

    No full text
    Author Institution: Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742The dynamics of collisional deactivation of highly energized molecules, pyrazine-h4_{4} and pyrazine-d4_{4}, by HCl molecules at 300 K show evidence of a new mechanism for collisional energy transfer. Highly vibrationally excited (Evib_{vib} = 37,900 \wn) pyrazine-h4_{4} and pyrazine-d4_{4} molecules are produced in separate experiments by pulsed excitation with the fourth harmonic output of a Nd:YAG laser at λ\lambda = 266 nm. Collisions between the energized isotopes and HCl molecules are monitored by measuring the nascent transient IR absorption of scattered HCl in individual rotational states. The results indicate that HCl molecules are scattered with a gain in rotational and translational energy, but the largest recoil energies are observed for the lowest rotational energy states of HCl. This behavior is opposite to that seen for other bath molecules including DCl and CO2_{2}. The results point to differences in intermolecular interactions between the energy donor and acceptor molecules as contributing factors to the observed differences in the mechanism of energy transfer
    corecore