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Prenatal nicotine exposure (PNE) is linked to a large number of psychiatric disorders, 

including attention deficit hyperactivity disorder (ADHD). Current literature suggests that 

core deficits observed in ADHD reflect abnormal inhibitory control governed by the 

prefrontal cortex (PFC) of the brain. The PFC is structurally altered by PNE, but it is still 

unclear how neural firing is affected during tasks that test behavioral inhibition, such as 

the stop-signal task, or if neural correlates related to inhibitory control are affected after 

PNE in awake behaving animals. To address these questions, we recorded from single 

medial PFC (mPFC) neurons in control rats and PNE rats as they performed our stop-

signal task. We found that PNE rats were faster for all trial types and were less likely to 

inhibit the behavioral response on STOP trials. Neurons in mPFC fired more strongly on 

STOP trials and were correlated with accuracy and reaction time. Although the number of 

neurons exhibiting significant modulation during task performance did not differ between 

groups, overall activity in PNE was reduced. We conclude that PNE makes rats impulsive 

and reduces firing in mPFC neurons that carry signals related to response inhibition. 
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Introduction  

Attention deficit hyperactivity disorder (ADHD) 

Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder 

characterized by impulsivity1, hyperactivity, and inattention that influences one’s ability 

to concentrate and regulate behavior (National Institute of Mental Health, 2008). 

Impulsivity is a behavioral trait characterized by a tendency toward rapid, unplanned 

actions without considering the negative consequences of these actions (International 

Society for Research on Impulsivity, 2014). Hyperactivity is generally defined as high or 

excessive levels of motion. Inattention generally presents as difficulty concentrating, 

distractibility, and problems completing tasks (Milich, Balentine, & Lynam, 2001). These 

symptoms usually appear in early stages of life and in many cases persist through 

adulthood. Children with ADHD are more likely to encounter academic difficulties, such 

as scoring poorly on exams and withdrawing prematurely from school (Biederman & 

Faraone, 2005; Karande & Kulkarni, 2005). According to the American Psychological 

Association, 3.0-7.0% of school-aged children have ADHD (2013). Estimates of adult 

prevalence of ADHD in the United States vary greatly but are projected to be between 

1.0-7.3% (Simon, Czobor, Balint, Meszaros, & Bitter, 2009). 

Controversy of ADHD diagnosis 

This disorder has caused controversy due to disagreements over its diagnostic 

criteria, its frequency of diagnosis, and its method of treatment. Currently, there is no 

well established and experimentally verified neurological basis for ADHD, so the 

disorder has been diagnosed based on subjective, behavioral observations rather than 

                                                
1 For definitions of this and other terms, please see the glossary. 
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objective, neurobiological identifiers of the disorder. This ineffective method of 

diagnosing ADHD has led to numerous misdiagnoses and over-prescribed medications, 

which can be detrimental to the health of patients because of possible harmful side effects. 

For example, methylphenidate, a commonly prescribed drug for ADHD treatment, may 

cause insomnia, headaches, increased blood pressure, and increased heart rate (Evans, 

Morrill, & Parente, 2010). Additional dangers associated with ADHD medications 

include suicidal ideation, psychosis, heart attack, and even sudden death (Ruggiero et al., 

2012; Lakhan & Kirchgessner, 2012). Such diagnostic methods have also contributed to 

rising medical costs. Between $36 and $52 billion (in 2005 dollars) is spent annually for 

ADHD associated medical expenses (Centers for Disease Control and Prevention, 2013). 

Combined research examining the neural basis of ADHD and its behavioral observations 

will help create a more concrete method for diagnosing and treating this disorder.  

Research demonstrates that ADHD is linked to failure of the brain to control or 

inhibit behavior. The stop-signal task (SST), a popular method used in psychology to 

measure impulsivity, has shown that those with ADHD tend to have slower inhibition 

response times (Eagle & Baunez, 2010). Poor performance on these trials of the SST is 

observed after pharmacological manipulation of the prefrontal cortex (PFC), which 

suggests that there is an association between this brain area and impulsivity (Aron, 

Fletcher, Bullmore, Sahakian, & Robbins, 2003). 

Animal model of ADHD 

In general, animal models of impulsivity disorders are critical because they allow 

one to isolate certain causal factors from other developmental, genetic, or environmental 

factors which may also impact behavioral and neural deficits involved in these types of 
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disorders. Even if an animal model is not directly related to ADHD, the behavioral and 

brain deficits observed in the model could still provide insights into how the brain 

governs inhibitory control and how prescription drugs act. The research suggesting a 

causal link between prenatal nicotine exposure (PNE) and ADHD demonstrates that the 

PNE model has the potential to be a valid clinical animal model. 

To fully understand the neural basis of ADHD in humans, it is necessary to first 

establish a valid animal model of ADHD. Sontag, Tucha, Walitza, and Lange state that 

the best animal model should combine face validity, construct validity, and predictive 

validity (2010). Face validity is based primarily on similarities in symptoms; therefore, an 

effective animal model should demonstrate three core symptoms of ADHD to be present: 

attention deficit, hyperactivity, and impulsivity. Sontag et al. also assert that construct 

validity shows that the model corresponds to an established pathophysiological basis of 

the disorder. In addition, predictive validity is the ability to predict unknown 

characteristics of the neurobiology and pathophysiology of a disorder to provide potential 

new treatments. Numerous animal models, such as the Spontaneously Hypertensive Rat 

(SHR) and the Naples High-Excitability Rat, have been suggested for ADHD, but the 

validity of these models remains debatable. SHR has been criticized as a model for 

ADHD because of the high variability in impulsiveness among these rodents and the 

presence of hypertension, a symptom rarely seen in ADHD. These factors reduce the 

SHR’s viability as a model for ADHD due to poor face and construct validity, 

respectively (Garcia & Kirkpatick, 2013). Additionally, although research suggests that 

Naples High-Excitability rats demonstrate inattentiveness, they do not exhibit 

hyperactivity or impulsivity, thus they lack face validity (Sagvolden, Russell, Aase, 
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Johansen, & Farshbaf, 2005). A third animal model demonstrates impulsivity, as PNE 

might, through disruption of the superior colliculus, an area, which integrates sensory 

inputs from multiple modalities. This model demonstrated face validity through impaired 

performance of the Go/No-Go task, but still lacks construct and predictive validity 

(Mathis et al., 2014). According to Sontag et al., even though there are many different 

animal models that have been used to study ADHD, no model has shown all three types 

of validity that are not limited by potential confounding variables.  

Although a thoroughly validated animal model of ADHD has not yet been 

established, another potential model, which has not yet been thoroughly examined, is the 

PNE rat. This rat model highlights the relationship noted between pregnant mothers who 

smoke cigarettes and the 2 to 4 fold increased risk that their children will be diagnosed 

with ADHD (Wasserman, Liu, Pine, & Graziano, 2001; Heath & Picciotto, 2009). In 

2005, approximately 10.7 to 12.4% of pregnant women in the United States reported 

smoking (Martin et al., 2007). Research has demonstrated that PNE leads to a 

dysfunction in the development of dopaminergic and noradrenergic pathways in the 

brain; this dysfunction has been attributed to notable decreases in attention span and 

increases in impulsivity (Muneoka et al., 1997; Slotkin et al., 1987). Our study serves to 

suggest and study the PNE rat as a plausible model of ADHD by examining behavioral 

and neural deficits during performance of a SST. We focused on the medial prefrontal 

cortex (mPFC) because it has been disrupted in ADHD and PNE, and several studies 

have provided a clear link between the mPFC and inhibitory control. 
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Our study 

In this study, we examined the relationship between PNE and mPFC activity to 

determine the validity of the PNE rat as a suitable model to study ADHD-like impulsivity. 

To do this, we examined the correlation between neural firing in the mPFC and 

impulsivity while characterizing neural firing and behavioral differences between PNE 

rats and control animals. We hypothesized that increased neural activity in mPFC 

mediates response inhibition. In addition, we hypothesized that PNE rats would show 

increased impulsivity during a task where behavioral inhibition is necessary, due to 

reduced neural firing in the mPFC. 

If abnormal neural firing in the mPFC is correlated with impulsivity in PNE rats, 

this will further validate the PNE rat as an acceptable animal model of ADHD. Firing in 

the PFC is thought to be disrupted in ADHD patients (Aron et al., 2003). Demonstrating 

that neural firing patterns in mPFC neurons are associated with impulsivity is 

fundamental for health professionals and pharmaceutical companies because they can 

potentially use an empirical basis of diagnosis to develop more effective treatments for 

ADHD. The precise temporal and spatial resolution of single neuron recordings will 

allow us to pinpoint the signals involved in impulsive action, which might enable drug 

development that better incorporates the activity of the mPFC. A full and proper 

understanding of mPFC circuitry is essential to the development of more effective 

treatment solutions and diagnostic strategies related to impulse disorders such as ADHD. 

 

Literature Review 

From 2003 to 2007, ADHD diagnoses increased by an average of 5.5% yearly, 



` 6 

which may be attributed to diagnoses being based on qualitative observations of an 

individual’s behavior (Centers for Disease Control and Prevention, 2013). The lack of a 

clinically significant and verified neurological basis has resulted in significant increases 

in misdiagnoses (Kim & Miklowitz, 2002). Understanding the brain regions associated 

with the pathology of ADHD is instrumental in diagnosing patients in a consistent 

manner. Research on the role of the mPFC in ADHD can help formulate a concrete 

diagnosis of the disorder.  

Currently, the long-term efficacy of stimulant use to treat ADHD is unclear. 

Studies have shown that commonly prescribed drugs, such as Ritalin® and Adderall®, 

may be effective short-term treatment options for children with ADHD, but do not have 

any long-term effects on academic performance of adult college students with ADHD 

(Advokat, 2010; Blase et al, 2009). In a study examining the cognitive effects of 

stimulants, the same academic impairment in children and adolescents with ADHD was 

shown to be present in college students with the disorder as well Advokat & Scheithauer, 

2013). Furthermore, ADHD undergraduates were shown to be capable of performing just 

as well as students without ADHD, provided they practiced effective study habits. While 

stimulants have been shown to reduce frustration and improve self-regulation without 

impairing attention, they have also been shown to promote risky behavior and increase 

the likelihood of becoming distracted (Campbell-Meiklejohn et al., 2012; Advokat & 

Scheithauer, 2013). Further research on the neural basis of ADHD can therefore help 

expand the existing database of treatment for the disorder.  

In order to elucidate the neural basis of impulsivity as observed in ADHD, we 

must choose a valid rat model of the disorder and integrate it with neural recording of the 
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mPFC. Our literature review addresses various aspects of ADHD. First, we discuss the 

clinical components of ADHD to assess the deficiencies in the current system of 

diagnosis. Next, we analyze the multiple behavioral factors of ADHD, one of which is 

response inhibition as measured by the SST. Then, we review relevant research on the 

neurophysiology of ADHD, focusing on the mPFC and the neurotransmitters dopamine 

and noradrenaline. Following this, we examine the PNE rat model, which has been shown 

to have ADHD-like symptoms, but requires further study to validate it as an accurate 

model of ADHD. Finally, we review the results of imaging studies on the neurological 

presentation of ADHD. 

 

Clinical Components: Difficulties in diagnosing and treating ADHD 

The Diagnostic and Statistical Manual of Mental Disorders V (DSM-V) 

The Diagnostic and Statistical Manual of Mental Disorders V (DSM-V) is the 

American Psychiatric Association’s most recently produced guide for the standard 

criteria for the classification of mental disorders. According to the manual, there are 18 

symptoms associated with the ADHD, the most common of which are impulsivity, 

inattention, and hyperactivity (American Psychiatric Association, 2013). These 

symptoms also overlap with symptoms for other psychiatric disorders, such as Obsessive-

Compulsive Disorder, Post-Traumatic Stress Disorder, or Learning Disorder (Spiro, 

2013). Although the DSM-V is the most reputable source to use for ADHD diagnosis, the 

DSM-V may not actually result in a more accurate diagnosis of ADHD (Ghanizadeh, 

2013). Furthermore, some of these symptoms may not be applicable to all children with 

ADHD. Because it is still difficult to identify symptoms that are specific to ADHD, there 
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is still a great need for finding more accurate ways to diagnose and treat the disorder. 

Indeed, EEG combined with task performance has already been show to predict ADHD 

diagnosis with high accuracy (Lenartowicz et al., 2014; Heinrich, Hoegl, Moll, & Kratz, 

2014), suggesting that a better understanding of the neurobiological basis of the disorder 

would make diagnosis more accurate by coupling DSM criteria with imaging during 

behavioral tasks. 

The 18 symptoms presented in the DSM-V are separated into two categories or 

symptom domains: inattention and hyperactivity-impulsivity. The inattention domain 

includes symptoms such as the inability to pay attention on tasks, to listen when spoken 

to directly, and to complete homework or work-related duties. The hyperactivity-

impulsivity domain includes behaviors such as fidgeting with the hands and feet, being 

unable to participate in leisure activities quietly, and interrupting others often. These 

symptoms, which have been shown to impair the ability to function at school, work, or in 

social environments, must be present in at least two different settings. To be diagnosed 

with ADHD, an individual must have experienced the onset of several of these symptoms 

prior to the age of 12. Children 16 years of age and younger must display at least six 

symptoms from one of these domains, whereas adults and adolescents 17 years and older 

must display at least five symptoms (Centers for Disease Control and Prevention, 2013).  

Based on the symptoms that an individual expresses, he or she is considered to be 

predominantly hyperactive-impulsive, predominantly inattentive, or combined 

hyperactive-impulsive and inattentive. If he or she displays enough symptoms from the 

hyperactivity-impulsivity category but not enough from the inattention category, he or 

she is predominantly hyperactive-impulsive. Similarly, a predominantly inattentive 
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individual expresses enough symptoms in the inattention category, but not from the 

hyperactivity-impulsivity category. Combined hyperactive-impulsive and inattentive 

individuals show enough symptoms from both categories. In all three cases, symptoms 

must have been present for six months prior to diagnosis (Centers for Disease Control 

and Prevention, 2013). Although all of these characteristics are fully discussed in the 

DSM-V, these criteria still have limitations. Most children diagnosed with ADHD have a 

combined hyperactive-impulsive character; due to the overlapping nature of these 

symptoms, it is rather difficult to clearly distinguish the different symptoms present in 

each child. 

Diagnosis of ADHD  

The diagnosis process consists of mostly behavioral observations. Licensed health 

professionals gather information about the child’s behavior along with the environment 

that he or she is in. First, the health professional tries to rule out other possible disorders 

based on the symptoms the child displays. They will generally look for learning 

disabilities, depression, or sudden changes in lifestyle, such as a death in the family 

(National Institute of Mental Health, 2012). The second part of the process consists of 

checking school and medical history. The health professional will gather information 

about the child’s behavior from teachers, parents, babysitters, and other adults who know 

the child well. According to the National Institute of Health, some possible questions 

include, “Are behaviors a continuous problem in response to the temporary situation?” 

and “Are behaviors excessive and long lasting? Do they affect all aspects of the child’s 

life?” (2012). Finally, the health professional will observe the child’s behavior in a 

psychiatric setting, evaluating his or her ability and academic achievement. Overall, the 
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diagnostic process is rather qualitative; it is mostly up to the health professional to 

accurately diagnose the disorder based on vague behavioral observations and 

questionnaires. Although health professionals rely on information from teachers, many of 

these instructors are often untrained on behavioral disorders such as ADHD and are 

unable to correctly identify symptoms in children. The type of questionnaires used for 

diagnosis may also affect a teacher’s report on a child. Some questionnaires may be 

broader and based more on subjective observations, while others may be based more on 

DSM criteria (Kieling et al., 2010; Dias et al., 2013). Thus, observations of the child in 

non-clinical settings, such as in school, do not always provide accurate information about 

the child’s behavior. 

Increases in ADHD diagnoses 

Over the past ten years, the diagnosis of ADHD has increased by 66% (Galéra et 

al., 2011). While the DSM-V outlines the current methods of diagnosing ADHD, these 

methods rely solely on behavior observations. Thus, it is possible to infer that many 

inaccurate diagnoses are possible under this current system. Furthermore, the DSM-V 

guidelines do not consider that individuals within a specific subtype can have symptoms 

that vary in severity. Certain factors, such as gender, age, and cultural background must 

also be taken into account when making the diagnosis (Frick & Nigg, 2011). Even 

assessments such as the Conners’ Continuous Performance Test, which produces 

response patterns based on a patient’s reaction time to letters on a computer screen, are 

not always accurate indicators of ADHD (IPS Information Circular, 2009). Results of 

these tests can be confounded by the presence of other contributing factors such as 

reading disorders and other learning disabilities (McGee, 2000). In college-aged students, 
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current tests used to identify ADHD symptoms do not distinguish between persons with 

actual symptoms of ADHD and persons who were coached to malinger, suggesting a 

great need for more accurate diagnostic tools (Sollman, Ranseen, & Berry, 2010).  

 

A Test of Behavioral Inhibition: The Stop-Signal Task (SST) 

Stop-Signal Task Assesses Impulsivity in Humans  

In numerous studies, the SST is a method that is used to measure impulsivity 

across several species (Dagenbach & Carr, 1994). The task gauges how quickly an 

already-initiated response to a stimulus is inhibited (Eagle & Baunez, 2010), a behavior 

that is repressed in ADHD patients and is correlated with other measures of impulsivity 

(Oosterlaan, Logan, & Sergeant, 1998). The SST enables one to determine if poor 

inhibition is due to dysfunctional executive processing (Oosterlaan, Logan, & Sergeant, 

1998). In this task, the subject is trained to respond to a conditioned stimulus, known as 

the go-signal, such as a tone. After this initial training, the subject practices restraining 

his or her response to the go-signal and responding to a second conditioned stimulus, 

known as the stop-signal. All of the trials begin with the go-signal; however, on a 

minority of trials (~20%), the stop-signal appears after the go-signal. Because the subject 

becomes accustomed to reacting habitually to the go-signal, it is more difficult to inhibit 

his or her response on stop-signal trials. The race model describes how performance on 

the SST might be controlled (Liddle et. al, 2009; Logan, Cowan, & Davis, 1984). The 

model suggests a race between the processes that underlie response execution 

(responding to the go-signal) and inhibition (responding to the stop-signal) (Logan, 1981; 

Alderson, Rapport, & Kofler, 2007). Stop and go processes compete with each other to 

alter the behavior of the subject, and the one that finishes first determines the subject’s 
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response. From these trials, one can measure the subject’s ability to stop the initiated go-

response and obtain a measure of impulsivity (Logan, 1981; Alderson, Rapport, & Kofler, 

2007). 

The SST provides a quantitative measure of motor inhibition and impulsivity, 

which are measured by the stop signal reaction time (SSRT) and stop accuracy. The 

SSRT is the time needed by the subjects to inhibit the initiated response to the go-signal 

and change their behavior to the conditioned response of the stop-signal. Stop accuracy is 

the percent of STOP trials during which the subject correctly inhibits a response and 

completes the appropriate behavior (Bari et al., 2011). The SST is most widely used in 

studying the behavior of children with ADHD. In a review by Verbruggen & Logan, they 

found that children with ADHD have slower SSRTs than individuals without the disorder 

(2008). By obtaining and analyzing a subject’s SSRT values upon completion of the SST, 

it is possible to use these values as a basis for measuring inhibitory control and 

impulsivity.  

Experts in the field of clinical psychology have made extensive use of SSRTs to 

study response inhibition in persons deemed generally impulsive, such as those with 

ADHD (van Boxtel, van der Molen, Jennings, & Brunia, 2001). A study published in 

2008 used a SST to measure inhibition in children that were 4-12 years old with and 

without ADHD. The researchers found that levels of inhibitory control improve with age, 

meaning high impulsivity at age four or five can be ameliorated by age 12. They also 

concluded that the SST and resulting data, such as the SSRT, is useful for diagnosing 

ADHD (Tillman et al., 2008). Longer SSRTs, which suggest that a greater amount of 

time is needed to inhibit an initiated response, have been associated with both children 
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and adults with ADHD (McAlonan et al., 2009). Similar results have been demonstrated 

in animal models of ADHD (Bari & Robbins, 2011). A high SSRT value, therefore, is 

correlated to a lower level of inhibitory control and higher level of impulsivity in subjects 

(Verbruggen & Logan, 2009).  

The SST can also be used to determine the severity of ADHD. In 2013, Crosbie et 

al. used the SST to determine if factors such as deficits in response inhibition, increased 

variability, and slower latency were endophenotypes of ADHD. An endophenotype is a 

stable behavioral symptom that is rooted in genetics. For example, a deficit in behavioral 

inhibition may be an endophenotype of ADHD. The study focused on subjects with 

ADHD varying in severity according to scores from the Strengths and Weaknesses of 

ADHD-symptoms and Normal-Behavior scale, which uses diagnostic criteria for ADHD 

from the DSM-IV. Researchers then compared the SSRT data with diagnoses of ADHD 

and found that those with longer SSRTs had more severe cases of ADHD (2013). 

Finally, ADHD-diagnosed children exhibit difficulty inhibiting behavior on STOP 

trials and reengaging their responses after inhibition (Nigg, 1999; Schachar, Tannock, 

Marriott, & Logan, 1995). Furthermore, several studies have also reported increased 

variance in movement times in general. This variance may be attributed to deficits in 

responding to visual stimuli and then processing the second stimulus. These results 

suggest that children with ADHD have deficits not only in response inhibition but also in 

attentional and cognitive control (Hooks, et al., 1994; Alderson, Rapport, & Kofler, 2007; 

Lijffijt et al., 2005; Alderson, Rapport, Sarver & Kofler, 2008).  

Stop-Signal Task Assesses Impulsivity in Rats 

The SST has been used extensively not only in humans, but also in animal models. 
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In these studies, the animal subjects are required to push a lever or enter a well after 

illumination of a light on 80% of trials to obtain a reward (Ajarem & Ahmad, 1998). On 

20% of trials, a stop-signal, which is either a tone or a second light, is presented which 

instructs the animal to stop its ongoing movement. Thus, this animal analog of the human 

stop-signal task captures the same behavioral functions, namely the ability to inhibit 

habitual prepotent tendencies, such as to stop following the go signal.  

Importance of using an animal model for neurobiological research 

Animal models allow researchers to pose neurobiological questions that cannot be 

addressed via human research. The rat is the most widely used animal model for studying 

impulsivity as observed in ADHD, taking advantage of the structural and functional 

homology of the brains between humans and rats and the simplicity of the tasks 

evaluating behavioral inhibition in both species. Species that show homology have 

structures that have a common ancestry, behavioral purpose, and mechanisms of action. 

These factors allow researchers to investigate psychiatric dysfunction with invasive 

techniques that are not possible with human subjects, such as single neuron recordings 

and changes in neurotransmitter concentrations during behavioral tasks. 

Humans and rats share similar mechanisms and structures in brain function. Both 

species have a conserved structure of basal ganglia, which is actively involved in 

behavioral decisions. They also share similar ascending neurotransmitter systems such as 

acetylcholine, noradrenaline, and dopamine. This structural and functional homology 

between humans and rats allows for comparative studies. In addition, the basic forms of 

SSTs can be used in both species without significant alterations in experimental design 

(Eagle, Bari, & Robbins, 2008). Rats can be used to show relationships between brain 
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activity and behavior that cannot be achieved in human subjects. 

 

Prefrontal Cortical Circuit: Impulse Control and Attention 

Basic Functions and Connectivity  

The PFC is a region of the brain in both human and rats that functions as an 

executive control center important for decision-making, learning, and memory and is 

disrupted in many psychiatric disorders, including ADHD. Executive functions can be 

defined as processes that regulate or control cognitive circuits that govern behavior (e.g., 

response selection, attention, inhibitory control, working memory, etc). Here, we review 

connectivity that supports these functions with specific focus on circuits that may be 

related to performance on the SST.  

 

Figure 1.1. Overview of mPFC circuitry. (Euston, Gruber, & McNaughton, 2012). 

Abbreviations: dorsal anterior cingulate cortex (ACd), dorsal peduncular cortex (DP), infralimbic 

cortex (IL), lateral orbital cortex (LO), prelimbic cortex (PL), ventral orbital cortex (VO).  
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The mPFC is divided into several interconnected regions that appear to have 

unique functions. Euston et al. conclude that these different parts of the mPFC form 

functional subunits in which dorsal anterior cingulate and prelimbic cortices receive 

skeletal motor input, infralimbic and dorsal peduncular cortices receive autonomic input, 

and ventral orbital and lateral orbital cortices receive sensory input (2012). These subsets 

of mPFC form a network that executes action or emotional response depending on each 

subset’s location in the cortex, as shown in Figure 1.1.  

The afferent (input) and efferent (output) connections of the mPFC suggest a clear 

distinction between the ventral and dorsal portions in the mPFC. Ventral mPFC projects 

to the piriform cortex, nucleus accumbens (NAcc), amygdala, hypothalamus and 

hippocampus (Vertes, 2006), areas associated with the limbic system. It receives 

information (afferents) from insular areas and the piriform cortex. Dorsal mPFC 

innervates sensorimotor areas in the frontal cortex, parietal lobes, and dorsal striatum, 

areas critical for executive function and attention, and receives input from secondary 

visual and posterior agranular cortices. Consistent with these connections, lesions in the 

ventral and dorsal pathways produce distinguishable deficits in limbic processing and 

executive function (e.g., response inhibition) (Euston et al., 2012).  

Further examination of the connectivity of the mPFC and its associated functions 

reveals the complex role the mPFC has in modulating cognition and behavior. Lesions of 

the ventral projections to the hippocampus, a brain area responsible for memory 

formation, emotion, navigation, and spatial orientation, have been shown to correlate 

with an increased likelihood of impulsive decision-making (Cheung & Cardinal, 2005; 

Eagle & Baunez, 2010). The neural connection between the hippocampus and mPFC is 
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also critically involved in spatial working memory (SWM), the part of memory that is 

responsible for the spatial environment. In animals, SWM is necessary in performing 

tasks that are vital to survival, such as foraging for food.  

In addition to SWM, the dorsal portion of the mPFC is also involved in 

coordinating stimulus-dependent processing necessary to perform the SST. Both the 

SSRT and SWM are impaired in individuals with ADHD. Clark et al. administered both a 

SST and a SWM task to 20 adults with ADHD. In the SWM task, the participants were 

given visual cues to reproduce in the correct orientation and space. They found that the 

SSRT was significantly associated with the SWM capacity, suggesting a link between the 

two processes. This link could be explained by the fact that both processes rely on the 

mPFC (2007). 

The role of mPFC in modulating behavior is also evident in its dorsal projections 

to the cerebellum, an area that is, in addition to other motor regions, responsible for fine 

motor control and associative learning. A 2013 study by Chen et al. showed through the 

use of the trace eyeblink conditioning test in guinea pigs that connections between the 

cerebellum and the mPFC are necessary for an organism to learn a conditioned response. 

The eyeblink conditioning test works by using a puff of air to stimulate the eye to blink. 

The guinea pig is then conditioned to blink to conditioned stimuli (e.g., tone) that predict 

the air puff. If the mPFC is inhibited or connections between mPFC and cerebellum are 

disrupted, this conditioned response is impaired (2013).  

Although research suggests that the mPFC may play an extensive role in cognitive 

and behavioral functions, researchers continue to debate whether the mPFC in humans is 

homologous to the mPFC in rat models. Anatomical evidence suggests that the mPFC in 
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rodents is similar to that of primates, as shown in Figure 1.2 (Euston, Gruber & 

McNaughton, 2012). Similar connectivity patterns are observed in rats and humans; the 

dorsal mPFC connects to sensorimotor and association neocortical areas, whereas the 

ventral areas connect to the amygdala and temporal and limbic association cortices. The 

rat mPFC has been implicated in working memory, attention, response initiation and 

management of autonomic control and emotion, which may be attributed to these 

connections (Heidbreder & Groenewegan, 2003). This suggests that the mPFC may serve 

a similar function in the rat as it does in humans. Thus, by examining the mPFC in rat 

models, which has both structural and functional homology with the human mPFC, we 

may elucidate further functions of the mPFC in humans and its role in various 

pathologies. 

 

Figure 1.2. Homology between human and rat mPFC. Human mPFC has a structurally and 

functionally homologous area in the rat brain (Gass & Chandler, 2013). 

 

Role of mPFC and Connected Areas in Attention and Impulsivity in Rats 

Areas strongly connected with mPFC are clearly involved in functions pertaining 
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to performance on the SST. Striatum, one of the efferents of the mPFC, plays a crucial 

role in regulating attention, decision-making, and motivation/reward processing 

(Liljeholm, 2012). In a study conducted by Eagle et al., lesions of the medial striatum 

resulted in significant deficits on SST performance and longer stop-signal reaction times 

(SSRTs) (2003). In another study utilizing the 5-choice serial reaction time task (5-

CSRTT), a task capable of measuring different aspects of performance such as attention, 

inhibition, and impulsive responses, medial striatal lesions induced increased premature 

responding, which is similar to what has been described after PNE (Rogers et al., 2001). 

These results signify that the circuit connecting the mPFC with the striatum is involved in 

controlling inhibition and loss of its function results in impulsive decision-making. In a 

study conducted by Christakou et al., the circuit comprising the mPFC and the 

dorsomedial striatum was disconnected in rats performing the 5-CSRTT. In these rats, 

there was a persistent deficit characterized by a reduction in accuracy and speed in 

responding to the visual stimulus in the task, suggesting the circuit’s role in regulating 

visual attention as well (2001).  

Other studies have shown that the NAcc, another efferent of the mPFC, is critical 

for regulating impulsivity related to delayed gratification. In one 2001 study, rats 

performed the delay-discounting task, where the subject chooses between a small, 

immediate reward or a large, delayed reward. At the beginning of each training session, 

rats choose the larger reward, but as the delay for the large reward increases, animals act 

impulsively and start choosing the smaller, more immediate reward. Rats with lesions in 

the NAcc were more likely to select the smaller, immediate reward than control rats, thus 

exhibiting increased impulsivity, a clinical feature of ADHD (Cardinal, Pennicott, 
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Sugathapala, Robbins, & Everitt, 2001).  

Role of Neurotransmitters in PFC and Impulsivity  

Neurotransmitters play key roles in information processing within brain structures 

such as the mPFC. The dopaminergic and noradrenergic neurotransmitter pathways are 

both integral to the control of mPFC-dependent cognitive processes such as behavioral 

inhibition and impulsivity. In rats, there is a significant positive correlation between 

impulsive choice and levels of the dopamine receptors D1 and D5 in the mPFC of rats 

(Loos et al., 2010). In ADHD patients, who have abnormal behavioral inhibition 

processing and greater levels of impulsivity, Positron Emission Tomography (PET) scans 

show decreased dopamine and noradrenaline activity in frontostriatal circuits. This 

decrease in neuronal activity results from the potential combination of imbalances in 

neurotransmitter synthesis, release, receptor activation, and neuronal responsiveness (del 

Campo et al., 2011). These neurotransmitter systems are acted upon by amphetamine 

(Adderall®) and methylphenidate (Ritalin®). A 2006 study showed that the effects of 

these drugs on the brain were mimicked by a dopamine reuptake inhibitor, which 

increases the amount of neurotransmitter available in the synapse, and attenuated by a 

dopamine D1 receptor antagonist and an adrenergic α2 receptor antagonist, which blocks 

activity of these neurotransmitters. This suggests that both dopamine and noradrenaline 

are involved in regulating impulsive choice (van Gaalen, van Koten, Schoffelmeer, & 

Vanderschuren, 2006). 

Human Imaging Studies and the Stop-Signal Task 

During the SST, various functional neuroimaging techniques have been used to 

perform localization of executive functions, such as response inhibition within the mPFC 



` 21 

(Kelly, Margulies, & Xavier, 2007). These neuroimaging techniques have enabled 

researchers to suggest a neurological basis of symptoms of ADHD. 

Quantitative neuroimaging analysis of ADHD has demonstrated decreased brain 

volume in patients with ADHD (McAlonan et al., 2007; Kelly, Margulies, & Xavier, 

2007). A healthy individual normally attains 90% of total brain volume by the age of five 

and reaches a maximum in total cerebral volume by early adolescence. Also, grey matter 

volumes in the frontal and parietal lobes peak at approximately 12 years. In one study, 

children with ADHD showed cerebral volumes that were 3.2% less than those of controls, 

and their decreased cerebral volumes were correlated with increased ADHD symptoms 

(Durston et al., 2004; Krain & Castellanos, 2006). In ADHD patients, certain brain 

regions, such as the lateral PFC, the basal ganglia, and the cerebellum, show significantly 

reduced volumes compared to those of control groups (Emond, Joyal, & Poissant, 2009). 

Children with ADHD have shown defects in cortical development as well. The peaks of 

grey matter maturation primarily in the prefrontal area in ADHD patients occur three 

years later than in controls (Shaw et al., 2006; Curatolo, D’Agati, & Moavero, 2010). 

Similarly, individuals with ADHD exhibit reductions in white matter volumes, 

midsagittal corpus callosum regions, and cortical thickness (Castellanos et al., 2002; 

Curatolo, D’Agati, & Moavero, 2010).  

Magnetic resonance imaging (MRI) is the most common method to analyze 

anatomical differences and observe distinct neuroanatomical characteristics between 

ADHD patients and control subjects. MRI allows studies to quantify volumes of specific 

brain areas and differences in grey and white matter (Krain & Castellanos, 2006). The 

most common form of MRI used in ADHD pathology analysis is blood oxygen level-
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dependent functional MRI (BOLD fMRI). When the neurons in a specific brain region 

are active, the amount of oxygen present in the blood increases because the blood flow is 

locally increased. The increased blood flow compensates for the use of oxygen by the 

tissue. Thus, a BOLD signal associated with increased neural activity reflects an increase 

in oxygen. Because BOLD fMRI measures the ratio of oxygenated to deoxygenated 

blood, a change in blood oxygenation levels is representative of a change in local neural 

activity, which then appears as a change in signal on the fMRI scan. This method also 

enables assessment of the neurobiology underlying the disorder by comparing the 

different task-aroused brain activity patterns between ADHD patients and controls (Tian 

et al., 2007). For example, Hart et al. investigated the relationship between inhibition and 

attention in ADHD patients during performance of the SST. They discovered that patients 

with ADHD had reduced activation during inhibition in the right inferior frontal cortex, 

mPFC, supplementary motor area, anterior cingulate cortex (ACC), striatum, and 

thalamic areas (2013). 

The meta-analysis of resting-state fMRI studies reveals widespread differences 

between ADHD patients compared to control groups in a number of regions, including 

visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, and default 

networks. Overall, ADHD patients exhibit significant hypoactivation in visual and 

frontoparietal regions, two areas involved in selection of sensory contents of attention 

and hyperactivation in regions associated with the default network, a brain circuit 

involved in internal tasks such as daydreaming instead of external tasks. In children, the 

meta-analysis also revealed hypoactivation in frontal regions and hyperactivation in the 

posterior cingulate cortex and midcingulate cortex (Cortese et al., 2012). Prefrontal 
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hypoactivity has the potential to dysregulate dopaminergic function, which leads to 

reduced responsivity to reward-related cues and thus global disruption in reinforcement 

and motivation (Kosobud, Harris & Chapin, 1994; Kollins et al, 2014). 

Drugs used to treat ADHD, such as methylphenidate, have been shown to 

modulate brain activity in certain regions. fMRI studies in children demonstrate that 

methylphenidate causes increased frontal lobe activation (Vaidya et al., 1998; Czerniak et 

al., 2013). In addition, individuals with lesions to the mPFC demonstrated reduced 

performance on the SST in addition to deficits on neuropsychological testing (Lovstad et 

al., 2012). Additional evidence that supports the mPFC’s role in the SST is the observed 

increased activation of the mPFC during the task as recorded by fMRI. It is believed that 

this increase is associated with intentional inhibition (Schel et al., 2014). fMRI studies 

have also demonstrated that shorter SSRTs are correlated with increased mPFC activity, 

which is believed to be associated with stop-signal inhibition (Li, Yan, Sinha, & Lee, 

2008). 

Despite its advantages, MRI has some limitations. The biggest concern is its high 

cost, which makes obtaining large sample sizes difficult. Due to possible confounding 

variables such as gender, age, and clinical setting, obtaining an accurate comparison 

between ADHD patients and controls using only MRI is also challenging (Rossi, 1990; 

Krain & Castellanos, 2006). MRI has limited spatial and temporal resolution. However, it 

can be used to detect activity in specific regions across the entire brain over time, thus it 

is still widely used in investigation of neurophysiology of various mental illnesses.  

 

Prenatal Nicotine Exposure as a Model for ADHD 

To better understand the neurobiology of ADHD, scientists have adopted the use 
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of animal models. Animal models enable scientists to directly measure symptoms of a 

disorder and identify areas of the brain that may be responsible for these symptoms in 

humans. Unfortunately, the scientific community has yet to agree upon a single 

experimentally validated animal model of ADHD. Many proposed models exist, but none 

have met all validation criteria. Such a model is needed to examine the origin of the 

disorder symptoms and the effectiveness and long-term consequences of pharmacological 

treatments. 

Developing animal models of ADHD is difficult due to the combined genetic and 

environmental causes of ADHD. However, several studies correlate PNE in children to a 

high incidence of ADHD and other behavioral deficits later in life (Nomura et al., 2010). 

PNE rats could be used to further study the neurological basis of ADHD if this model 

were thoroughly validated. 

Maternal smoking is correlated with higher rates of child diagnosis of ADHD and 

other behavioral disorders. Several studies have found correlations between maternal 

smoking during pregnancy and behavioral deficits in children, including ADHD (Thapar 

et al., 2003; Wasserman et al., 2001). Children exposed to smoking prenatally had a two- 

to four-fold increased risk of developing ADHD (Ernst, Moolchan & Robinson, 2001; 

Heath & Piccotto, 2009). Through animal model research, nicotine has been implicated 

as causing these disorders via long-term changes to a child's brain structure and behavior 

(Ajarem & Ahmad, 1998). Nicotine is a teratogen; when a mother is exposed to nicotine, 

it can cross the placental blood barrier from the mother’s blood to the fetuses and affect 

fetal development. In particular, it disrupts fetal development of central neurotransmitter 

systems, including dopaminergic and monoaminergic systems (Slotkin et al., 1987; 
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Navarro et al., 1989; Oliff & Gallardo, 1999). PNE causes a multitude of neurochemical 

changes, including reduced DNA synthesis, altered neurotransmitter function, and 

cortical morphogenesis (the formation of cortical structures) (Wickström, 2007). These 

changes occur during critical periods of neonatal brain development, leading to changes 

in brain area volumes, firing patterns, neurotransmitter concentrations, and receptor 

density. These alterations are present in areas important for impulse inhibition and 

cognitive focus, leading to behavioral deficits in children. These behaviors show 

considerable similarities with those of ADHD, making PNE rats suitable candidates for 

an animal model of the disorder. 

Research has demonstrated a positive correlation between the magnitude of 

nicotine exposure and the severity of attentional control (Motlagh et al., 2011; Schmitz et 

al., 2006) and hyperactivity-impulsivity (Langley et al., 2007) symptoms in children with 

ADHD. Furthermore, children diagnosed with ADHD who were exposed to nicotine 

prenatally are more likely to have higher ADHD symptom scores and be less responsive 

to symptom intervention (Vujik et al., 2006). This correlation appears even when 

controlling for socioeconomic status, parental IQ, and parental ADHD status (Milberger 

et al., 1998; Biederman et al., 2009; Mick et al., 2002). Additionally, several longitudinal 

studies have demonstrated that children born to smoking mothers were more likely to be 

diagnosed with ADHD (Romano et al., 2006; Heath & Picotto, 2009; Galéra et al., 2011). 

At the pharmacological level, chronic nicotine exposure followed by acute withdrawal 

leads to significant reductions in tonic dopamine activity and in reward-related brain 

functions, further supporting the correlation (Epping-Jordan, Watkins, Koob, & Markou, 

1998; Zhang, Dong, Doyon, & Dani, 2012). 
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One meta-analysis that examined 24 studies assessing the relationship between 

PNE and the risk of developing behavioral problems related to ADHD also found that 

maternal consumption of tobacco during pregnancy was suspected to be associated with 

higher ADHD risk. However, the same study found that ADHD risk resulting from other 

maternal lifestyle factors, including alcohol and caffeine consumption and psychological 

stress during pregnancy, were too inconsistent to draw results from (Linnet et al., 2003). 

Meta-analyses of other environmental teratogens on behavioral deficits have drawn 

similar conclusions (Langley et al., 2005). 

Several studies have elucidated the effect that genetics may have on the incidence 

of ADHD, in particular that prenatal environmental effects and parental genetics may be 

inherently linked. A 2009 study examining maternal and paternal smoking habits as 

linked to attention deficits found that paternal smoking rates serves as a proxy for genes 

that contribute to attentional deficits, and that maternal smoking rates and child attention 

deficits are not linked (Atlink et al., 2009). This study is useful in suggesting that genetic 

factors should also be examined, as parental smoking may be caused by a genetic 

predisposition to impulsive behavior. However, it cannot be concluded that maternal 

smoking causes attention deficits, as their sample contained a low percentage of mothers 

who smoked, and of those who smoked, only 2.5% smoked 10 or more cigarettes per day 

during pregnancy.  

Impact of Prenatal Nicotine Exposure on Neurotransmitter Systems  

Prenatal nicotine exposure impacts several neurotransmitter systems including the 

acetylcholinergic and dopamine systems, which are reviewed below. During prenatal 

neural development, acetylcholine binds to the nicotinic acetylcholinergic receptor 
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(nAchR), stimulating dopamine release (Chen et al., 2005). During development, 

dopamine is critical for normal cell division, differentiation into their specialized cell 

types, and migration to their permanent location (Chen et al., 2005). Overstimulation of 

nAchR also leads to a long lasting dopamine deficiency, which leads to problems with 

attention, impulse control, and hyperactivity (Chen et al., 2005). 

Nicotinic Acetylcholinergic Receptor (nAchR)  

PNE changes the expression of nAchR in areas of the brain involved in dopamine 

neurotransmission. PNE affects neurons with nAchR receptors in the NAcc, PFC, ventral 

tegmental area, and substantia nigra in 14-day-old rats. Furthermore, mRNA assays show 

decreased expression of nAchR mRNAs in the ventral tegmental area for all receptor 

subtypes and in the NAcc and the PFC for one receptor subtype (Chen et al., 2005), 

suggesting that PNE leads to widespread downregulation of nAchR in areas previously 

deemed important for inhibition. Another study found similar results when measuring 

nAchR mRNAs in the thalamus, hypothalamus, and basal forebrain, areas responsible for 

wakefulness and arousal (Frank et al., 2001). Findings from these two studies 

demonstrate that nAchR are downregulated in the dopaminergic reward pathway in PNE 

rats with similar symptoms to humans diagnosed with ADHD, suggesting that there may 

be a correlation in neurophysiology between the two conditions. During development, 

however, PNE can upregulate nAchRs and alter the sensory processing, which may 

underlie the several behavioral characteristics observed in ADHD (Tizabi, Popke, 

Rahman, Nespor & Grunberg, 1997; Heath & Picciotto, 2009).  

DAT gene & D2/D3 receptors 

Dopamine receptor and transporter downregulation in ADHD can mostly be 
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explained by genetic factors. ADHD is highly heritable, as demonstrated by family, twin, 

and adoption studies yielding estimates around 76% heritability; thus, the majority of 

variance in ADHD diagnoses between members of the same family can be explained by 

genetic rather than environmental factors (Crosbie et al, 2013). The genes implicated in 

the etiology of ADHD are dopamine receptor genes DRD4 and DRD5, dopamine 

transporter gene DAT, dopamine beta-hydroxylase gene DBH (converts dopamine into 

noradrenaline), serotonin transporter gene 5-HTT, serotonin receptor gene HTR1B, and t-

SNARE gene SNAP-25 (allows neurotransmitters to enter the synaptic space) (Faraone et 

al., 2005). However, these genes do not fully explain the phenotypic manifestation and 

developmental course of the disease, suggesting an environmental interaction. For 

instance, although some dopamine receptors (D2 and D3) and transporters (DAT) are 

down-regulated in ADHD, an examination of genes for these receptors (DRD4 and 

DRD5) and transporter (DAT1) show no gene and environment interaction with maternal 

smoking significantly correlated with ADHD symptoms (Langley et al., 2008). Thus, D2 

and D3 downregulation might be explained by environmental factors. 

The results of this study match those of a human PET study, which found that D2 

and D3 were less expressed in the NAcc, midbrain, caudate, and hypothalamus of 

children with ADHD than in controls. The study further found that the DAT was 

downregulated in the midbrain of subjects with ADHD. The amount of downregulation 

of the dopamine receptors and transporters was correlated with the amount of attentional 

deficits demonstrated by the subject (Volkow et al., 2009). The same patterns of 

downregulation were further found in rats prenatally exposed to nicotine (Slotkin et al., 

1987). Additional research suggests that dopamine receptors may be downregulated only 
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after a period of increased dopamine turnover following nicotine exposure. Similarly, In 

children with ADHD, presynaptic dopamine storage in the prefrontal cortex and midbrain 

was significantly reduced and  negatively correlated with ADHD symptom severity 

(Ernst et al., 1999). Disruption in the dopamine system has been correlated with 

hyperactivity in rats (Richardson & Tizabi, 1994; Heath & Picciotto, 2009).  

 

PNE as a rodent model of ADHD 

Ajarem and Ahmad first proposed that a PNE model be used for exploring 

behavioral disorders. They administered nicotine to pregnant mice via injections and 

examined the pups’ righting reflex, cliff avoidance, rotating reflex, locomotion, and 

anxiety, all measures of motor and cognitive development. The rotating and righting 

reflexes of the nicotine-exposed mice were significantly delayed, showing motor delays. 

Furthermore, PNE mice were more active in the locomotion task, suggesting increased 

hyperactivity, a symptom of ADHD. Since mice have brain areas controlling motor skills 

and cognition that are homologous to those in humans, this article suggested that PNE in 

humans would retard growth during a critical prenatal period of brain development. The 

study further identified nicotine as the causative agent in cigarettes that lead to behavioral 

deficits (1998). 

Another study by Zhu et al. took a similar approach to propose the PNE mouse as 

an animal model of ADHD (2012). Zhu et al.’s research found that mice that present 

ADHD-like symptoms after PNE have dopamine deficits in brain structures homologous 

to the ACC and mPFC. These structures also show reduced volumes. The behavioral 

component of the study found that PNE mice were more hyperactive, suggesting that they 
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had an executive control dysfunction. Furthermore, methylphenidate decreased 

hyperactivity and increased dopamine in the ACC, suggesting another link between PNE 

and ADHD (Zhu et al., 2012).  

Thus, although there is no perfect model of ADHD, PNE has been linked to 

ADHD. It has started to gain acceptance because of its parallels to ADHD at behavioral, 

neuroanatomical, and neuropharmacological levels and its responsiveness to 

methylphenidate treatment. Some studies have gone as far to say that children born to 

mothers who smoke cigarettes during pregnancy show symptoms of ADHD that are 

indistinguishable from the ADHD symptoms that arise from other etiologies (Biederman 

et al., 2012). Despite the growing amount of research on impulsivity disorders such as 

ADHD, the neurophysiological mechanisms that mediate them are not completely 

understood.  

Summary 

Focused research on the neural correlates of ADHD can create a validated method 

for diagnosing the disorder and reduce the costs associated with numerous misdiagnoses. 

Current diagnostic methods consist primarily of behavioral observations and other tests 

that are subjective and lack standardization. This is mainly due to our lack of knowledge 

on frontal brain areas and its association with behavioral control. Understanding this link 

can be achieved through animal models, such as the PNE model. In PNE and ADHD, the 

mPFC is a crucial brain area. The brain regions association with impulsivity, a defining 

characteristic of ADHD, can be evaluated using the SST. Further investigation into the 

role of mPFC and its underlying correlates are essential to reducing the number of 

misdiagnoses and developing better pharmacological treatments.  



` 31 

 

Methodology 

Animal Care 

All procedures were approved by University of Maryland Institutional Animal 

Care and Use Committee (see Appendix A). The rats used for breeding during this study 

were Long-Evans Rats obtained through Charles River Laboratory. Throughout the study, 

we adhered to the procedures outlined in the Guide for the Care and Use of Laboratory 

Animals (National Research Council of the National Academy of Sciences, 2011). Using 

these guidelines, we housed our rats in appropriate cages with proper room temperature, 

ventilation, and feeding. At the end of the study, rats were perfused with saline and 

fixative after being rendered unconscious via isofluorane overdose. Brains were collected 

and stored in fixative.  

 

Prenatal Nicotine Exposure 

Rats were prenatally exposed to nicotine by administering a nicotine solution in 

the pregnant mothers’ drinking water. Ten females were obtained from Charles River 

Laboratory. Five of those were acclimated to nicotine solution (0.2 mg/mL). The five 

remaining had free access to water. Each mother’s total water consumption was measured 

twice a week (see Appendix B1 for sample water log). While the water consumption of 

the mothers exposed to nicotine was significantly lower than the water consumption of 

the control mothers, there was still continuous weight gain before and during pregnancy 

(t-test, p < 0.05). The average nicotine mother fluid consumption was 128 mL per week 

and the average control mother fluid consumption was 174 mL per measurement. There 
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was a significant difference between the weights of the nicotine mothers and the control 

mothers (t-test, p < 0.05). The average nicotine mother weight was 289 grams and the 

average control mother weight was 314 grams. These differences are consistent with 

previous research on prenatal nicotine exposure of rats (Schneider et al., 2010). All 20 

rats (five nicotine mothers, five control mothers, and ten mating males) were weighed 

twice a week. After two weeks on the 0.02 mg/mL dosage, the dose was increased to 0.04 

mg/mL, and then increased again two weeks later to 0.06 mg/mL, where it remained until 

the nicotine mothers gave birth. Nicotine administration was halted after the mothers 

gave birth. In all, this final nicotine exposure of 0.06 mg/mL was equivalent to human 

mothers smoking two to three packs of cigarettes per day according to a previous study 

(Schneider, Bizarro, Asherson, & Stolerman, 2010). 

Each time a nicotine mother gave birth to a litter, the pups were cross-fostered to 

a control mother on postnatal day three. This time period ensured that any handling of the 

pups by humans did not cause the mothers to reject the new pups. Cross fostering is the 

process by which pups are raised by the surrogate mothers. Cross fostering was done for 

nicotine pups to ensure that they were not exposed to the nicotine expressed through the 

nicotine mother’s milk. The control pups were taken care by other control mothers to 

ensure consistency. All cross fostering was successful, and we obtained 40 PNE pups and 

44 control pups from the four control dams and the three nicotine dams that were 

pregnant. We chose to use only male pups because decision-making circuits have been 

more extensively studied in males and PNE has been shown to have more dramatic 

effects on males than females (Romero & Chen, 2004). Additionally, ADHD is more 

prevalent in males than females (Evans, Morrill, & Parente, 2010).  
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The pups were weaned from their foster mothers on postnatal day 21 based on 

IACUC protocol. The pups were weighed once a week, and there was no significant 

difference between control male pups and PNE male pups (t-test, p = 0.5, see Appendix 

B2 for sample weight log). At postnatal day 40, control male pups weighed 198 grams on 

average and PNE male pups weighed 195 grams on average. To test for any preliminary 

behavioral deficiencies, the male pups performed a locomotion task on postnatal day 30. 

In this task, rats were individually placed into boxes with eight infrared beams across the 

box. When the rat crossed the beam, it was recorded as a crossing. The analysis showed 

that there was no significant difference in locomotor activity between the control rats and 

the PNE rats (t-test, p = 0.81). The control rats averaged 87 crossings and the PNE rats 

averaged 93 crossings. We created a cohort of 18 rats for the recording experiment 

described below. We randomly selected 11 control males from 4 control mothers. Two 

male offspring from two nicotine mothers were randomly selected and three male 

offspring from the remaining nicotine mother were randomly selected.  

 

Behavioral Task 

On postnatal day 49, adolescent rats (~12 years of age in human years, which is 

the prepubescent years when ADHD is most prevalently diagnosed) were introduced to 

the behavioral boxes. For the training procedure and the SST, recording was conducted in 

aluminum chambers approximately 18” on each side with downward sloping walls 

narrowing to an area of 12” × 12” at the bottom. On one wall, a central odor port was 

located above two adjacent fluid wells. Directional lights were located next to fluid wells. 

House lights were located above the panel, as shown in Figure 2.1. Task control was 
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implemented via computer. Port entry and licking was monitored by disruption of photo 

beams. 

 

 

Figure 2.1. Inside the behavioral boxes. Rats nose poke into the odor port above, follow the 

directional lights to the right or left, and then enter the respective left or right fluid well to receive 

reward.  

Before the final version of the SST was introduced, rats were shaped to perform 

the basis of the task. Each rat began with a free period where nose pokes were paired with 

reward delivery at the fluid well. After two days of sessions with this procedure, the basic 

GO task was introduced. Rats had to nose poke to initiate a trial, then one directional 

light flashed on, and then reward could be collected by entering the correct fluid well. 

After 18 days with the GO task, all rats responded correctly on at least 70% of trials and 

the stop-signal trial type was introduced (see Appendix B3 for a sample behavior log and 

Appendix C3 for complete task training protocol).  

The basic design of this complete task procedure is illustrated in Figure 2.2. Each 

trial began by illumination of house lights that instructed the rat to nose poke into the 

central port. Nose poking initiated a 1000 ms delay period, after which a directional cue 

Odor Port  

Directional 
Light 

Directional  
Light  

Fluid Wells  



` 35 

light either to the left or right of the nose poke flashed for 100 ms, indicating the direction 

in which the animal must respond to receive reward in a fluid well. These trials will be 

referred to as GO trials and occurred on 80% of trials. On a randomly interleaved 20% of 

trials, after exiting the central port, a second cue light illuminated opposite the first, 

instructing the animal that they must stop the already initiated movement and respond in 

the opposite direction (i.e. toward the second light). Illumination of the second light 

occurred between 0-100 ms after port exit (stop-signal delay; SSD). These trials will be 

referred to as “STOP-change” or “STOP” trials for short. The STOP cue was illuminated 

only after the movement had been initiated, thus we are examining the rats ability to 

inhibit a behavior already set in motion. Trial types are illustrated in Figure 2.3. For both 

GO and STOP trials, animals were required to wait between 800 and 1000ms in the fluid 

well before receiving reward. There were a total of four different trial-types: GO-left, 

GO-right, STOP-left-GO-right, and STOP-right-GO-left; however, for the remainder of 

the paper, response direction (i.e. left and right) will be referenced to the directional 

preferences of individual neurons (preferred or non-preferred) as determined by the 

direction of the behavioral response that produced the strongest firing (averaged over 

STOP and GO trial-types during the response epoch). Trials were presented in a 

pseudorandom sequence such that left and right trials were presented in equal numbers 

(±1 over 250 trials). 
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Figure 2.2. The stop-signal task. The figure shows an overview of task procedure (Bryden et al., 

2012). 

 

 

Figure 2.3. Trial types in the stop-signal task. The two main trial types discussed here are GO 

and STOP, illustrated here for both left and right directional signals (Bryden et al., 2012). 

 

Surgical Procedure 

Surgical procedures followed guidelines for aseptic technique. Electrodes were 

manufactured and implanted as in prior recording experiments (see Appendix C1 for 

complete protocol). Rats had a drivable bundle of 10 25-µm diameter FeNiCr wires 

(Stablohm 675, California Fine Wire, Grover Beach, CA) chronically implanted in the 

mPFC (+3.3 mm anterior to bregma, +0.6 mm lateral to bregma, 2 mm ventral to brain). 

Immediately prior to implantation, these wires were freshly cut with surgical scissors to 
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extend ~1 mm beyond the cannula and electroplated with platinum (H2PtCl6, Aldrich, 

Milwaukee, WI) to an impedance of ~300 kOhms, as illustrated in Figure 2.4 (see 

Appendix C1 for complete electrode protocol). 

To begin the surgeries to implant the electrodes, the rats were first anesthetized 

with isoflurane, an inhaled veterinary anesthetic, and fixed within ear bars to ensure 

stability throughout the surgery. An incision was then made into the scalp to expose the 

periosteum and skull. Based on an atlas of the rat’s brain, holes were drilled in the rat’s 

skull in order to install anchor screws that hold the electrode in place. A larger central 

hole was made for the insertion of the electrode itself. With the use of a microscope, the 

dura, the outermost layers of the membranes that cover the brain, were cut away from this 

central hole, and the microelectrode was inserted into the brain tissue. The electrode was 

driven further into the brain at a rate of 100 microns/minute until the region of interest 

was reached. The electrode was then fastened to the skull using grip cement. The incision 

was then stapled together, and the rat was administered buprenorphine and placed into a 

recovery chamber. Buprenorphine was administered twice during the 24-hour period 

following surgery for acute pain relief. The rats needed to recover postoperatively for one 

to two weeks (Bari et al., 2011; Acheson et al., 2006). Cephalexin (15 mg/kg) was 

administered twice daily for two weeks post-operatively to prevent infection (see 

Appendix B4 for a sample surgery log and Appendix A for complete surgery protocol). 
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Figure 2.4. Drivable recording electrode. The fine wires at the tip (top left) are inserted into the 

brain. Photo courtesy of Schoenbaum lab, part of the National Institute on Drug Abuse (NIDA). 

 

Single-Unit Recordings 

Procedures were the same as described previously (Bryden et al., 2011). Electrode 

wires were screened for activity daily during SST sessions. If no activity was detected, 

the rat was removed from the behavioral box, and the electrode assembly was advanced 

40 or 80 µm. When activity was detected, a session was conducted, and the electrode was 

advanced 40 µm at the end of the session (see Appendix B6 for sample electrode 

advancement log). Extracellular neural activity was recorded each day from each animal 

using the four identical Plexon Multichannel Acquisition Processor systems (Dallas, TX), 

which interfaced with stimulus-response training chambers (see Appendix B5 for sample 

single-unit recording log). Signals from the electrode wires were amplified 20X by an op-

amp headstage located on the electrode array. Immediately outside the training chamber, 

the signals were amplified 50X and filtered at 150-9000 Hz. The single unit signals were 

then sent to the Multichannel Acquisitions Processor box, where they were further 
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filtered at 2500-8000 Hz, digitized at 40 kHz and amplified at 1-32X. Waveforms, the 

shape of the electrical potential change as collected by the electrode during a single 

action potential which also had greater than a 2.5:1 signal-to-noise ratio, were extracted 

from active channels and recorded to disk by an associated workstation with event 

timestamps from the behavior computer. 

  

Data Analysis 

Units were sorted using Offline Sorter software from Plexon Inc. (Dallas, TX) 

using a template-matching algorithm. Sorted files were processed in Neuroexplorer to 

extract unit time-stamp and relevant event markers. These data were subsequently 

analyzed in Matlab (Natick, MA). Baseline firing was taken during a 1 second epoch 

starting 2 seconds prior to trial initiation (nose poke). For the majority of the analysis, 

activity was examined during the period between nose poke exit and well entry (response 

epoch), while the movement was being made and/or canceled. Wilcoxon tests, t-tests, 

ANOVA, and Pearson Chi-square tests was implemented to compare and measure 

relevant statistics (Bryden et al., 2011). Examples of analyses include comparing 

histograms of neural firing patterns across the trial time-course as well as observing the 

relationship between SSRT and neural firing. When a rat’s session was analyzed, the 

intensity and timing of its neural firing was compiled and aggregated with other sessions 

to provide an informative comparison of neural activity of the mPFC in all groups of rats 

(see Appendix D for complete MATLAB data analysis script). 

 

Histology 

The histological analysis was performed to confirm that the electrodes were 
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placed in the correct region of the brain during surgery. The final locations of the 

electrodes are illustrated in Figure 2.5. 

 

 

Figure 2.5. Coronal slice approximately 3.3 mm from bregma. Each dot represents the final 

position of the recording electrode for each animal based on histology. Dashed lines reflect the 

estimated track that the electrode traversed through the brain. Recording was contained to the 

mPFC, including anterior cingulate cortex, prelimbic prefrontal cortex, and dorsal aspects of the 

infralimbic prefrontal cortex. (CG: cingulate gyrus, PL: prelimbic cortex, IL: infralimbic cortex)  

 

The following is the histology procedure that was used: First, distilled water, 

sodium hydroxide, and acetic acid were mixed and heated until the solution was just 

boiling. Then, thionin was added, and solution was refluxed for 45 minutes, while stirring. 

After cooling the solution to room temperature, 1000 mL of the solution was decanted 

into a dark bottle, while the rest of the solution was decanted into another bottle and 

stored as excess. They were kept at 37 °C and filtered out before each use. In order to 

perform a Nissl stain, a histological stain procedure used to view neural tissues, the sliced 
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tissue was mounted on a slide. It was placed in a solution of equal parts of concentrated 

chloroform and ethanol for one hour under a fume hood. After soaking the tissue in 100% 

ethanol twice for two minutes each, the tissue was then soaked in 95% ethanol, 70% 

ethanol, and 50% ethanol each for two minutes at a time; then, it was dipped in distilled 

water twice. In order to create the stain, the tissue was soaked for 20 s in 0.25% thionin 

and again dipped in distilled water twice to remove excess stain. Finally, the tissue was 

dipped in 50% ethanol, 70% ethanol, 95% ethanol twice, and 100% ethanol twice for four 

minutes each to remove excess water. Afterwards, the tissue was soaked for four minutes 

in ortho-dimethylbenzene, meta-dimethyl benzene, and para-dimethylbenzene. Once 

soaked in the above solutions, the tissue was dried thoroughly and cover-slipped. 

 

Study Limitations 

Attrition effects were a main concern for our study. Factors such as fatigue, 

hunger, and thirst altered the rats’ motivation levels, which forced us to disregard trials 

that were adversely affected by these conditions; that is, when the rat did not complete 

the entire trial (National Research Council of the National Academy of Sciences, 2011). 

We were able to control for these variables by ensuring that the rats were not subjected to 

exhaustive tests and that they were allowed ample rest time between days of task 

performance. In order to ensure that trials were executed efficiently, we mildly deprived 

rats of water prior to completing the trials and used a thirst-based reward system. The rats 

received 35 mL of water per day. Several hours prior to running the task, the rats did not 

receive water. This lack of water acted as an incentive to motivate the rats to perform the 

task in order to receive water as a reward.  
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There was also the possibility of experimenter error in our study. A small group 

of team members built the electrodes and implanted them into the rats’ brains. If the 

building or implanting of the electrode differed between members, this may have affected 

the validity of our results. To compensate for any differences, we followed a set of 

consistent procedures and electrodes and surgeries were divided evenly between control 

and experimental groups. In addition, post-mortem histology revealed whether or not 

electrode placement was correct.  

An additional experimenter limitation was that our study was not conducted in a 

double-blind fashion, as the experimenters were aware of whether each rat belonged to 

the control or PNE group during data collection or analysis. To account for this, all rats 

were handled identically according to established procedures (see Methods). In addition, 

all analyses were performed on data sets from both groups simultaneously, and any data 

removed from analysis was done so based on the behavioral session being incomplete, 

not on the group to which the data belonged. 

 In order to account for a possible influence of gender on impulsivity, we only 

used male rats for several reasons. First, we opted not to use both genders first due to 

structural differences in the PFC in male rat brains as compared to female rat brains 

(Diamond, Johnson, Young, & Singh, 1983). Second, we chose to use male rats instead 

of female rats because male rats show higher impulsivity than female rats due to the 

effects of testosterone on brain development (Bayless, Darling, & Daniel, 2013). 

Furthermore, female rats have shown changes in learning strategies (Warren & Juraska, 

1997) and in impulsivity (Fuchs, Evans, Mehta, Case, & See, 2005) over the course of 

their estrous cycle, which would have affected how they learned and performed the task 
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and may have prevented us from comparing all trials to each other. Finally, decision-

making circuits have been more extensively studied in males and PNE has been shown to 

have more dramatic effects on males than females (Romero & Chen, 2004). Future work 

should examine the behavioral and physiological differences between male and female 

PNE rats.  

By accounting for these variables across both experimental and control groups, 

we preserved the internal validity of our research.  

 

Results 

Prenatal nicotine exposure impairs inhibitory control 

Rats in both control and PNE groups exhibited significantly slower movement 

speeds from port exit to well entry (Figure 3.1A) and reduced accuracy (Figure 3.1B) on 

STOP trials as compared to GO trials. Within each trial type, a slower latency resulted in 

better task performance. This is consistent with a speed-accuracy trade off in both groups. 

This is illustrated in Figure 3.2, which plots movement times (well entry minus port exit) 

against average percent correct scores for each recording session of all trial types. During 

sessions in which the rat was slower, performance was better. Consistent with this finding, 

STOP trial error movement times were significantly faster than movement times on 

correctly performed STOP trials (Figure 3.1A; t-test; p < 0.05). These results suggest that 

rats were planning and generating a movement prior to illumination of the stop-signal, in 

response to illumination of the first cue light, and that inhibition and redirection of the 

behavioral response was necessary to correctly perform STOP trials. 

When comparing control and PNE rats, we found that PNE rats were significantly 
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faster over all trial-types (Figure 3.1A; black versus grey; t-test; p < 0.05). Although the 

two groups did not differ significantly during performance of GO trials, PNE rats made 

significantly more errors on STOP trials than did control rats (Figure 3.1B; black versus 

grey; t-test; p < 0.05). We conclude that PNE makes rats less able to suppress movement 

on STOP trials but were unimpaired on GO trials, suggesting that deficits were limited to 

trial types during which rats had to inhibit their movement.  

 

 

Figure 3.1. Average movement times (a) and average percent correct (b). Both PNE and control 

groups are shown. Behavior was taken from neural recording sessions. Error bars are SEM. 

Asterisks indicate p < 0.05.  

 

 

a b 
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Figure 3.2. Scatter plot of movement time versus percent correct. Each dot represents one 

recording session. Both the PNE and control groups are shown. (p < 0.001, r2 = 0.95 and p < 

0.001, r2 = 0.13, respectively) 

 

Counts of task-related neurons were similar across control and PNE rats 

We recorded 631 and 552 neurons from mPFC in control and PNE rats, 

respectively. The recording locations are illustrated in Figure 2.5. Use of the SST in the 

context of behavioral neurophysiology allows us to examine activity related to response 

inhibition and redirection of behavior. STOP trials, during which the movement had to be 

stopped and redirected, are directly compared to responses made in the same direction, 

which cannot be done with more typical SSTs. Our first analysis was to determine the 

number of neurons in each group exhibiting task-related firing that was significantly 

modulated from baseline during the response epoch (port exit to well entry) relative to 

baseline (1 s prior to trial initiation; t-test; p < 0.05).  

We performed an analysis of the single-units and did not find any significant 

difference across the four groups. In controls, 20% and 31% of neurons significantly 

increased and decreased firing during the response epoch relative to baseline, respectively. 
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In PNE rats, 25% and 34% of neurons exhibited significant increases and decreases 

during the response epoch, respectively. These are defined as increasing- and decreasing-

type cells, respectively. In both areas the number of significant neurons were more than 

expected from chance alone (p < 0.001) and the proportion of ‘increasing’ and 

‘decreasing’ type cells did not significantly differ between the two groups. We conclude 

that the counts of neurons showing significant task-related increases and decreases in 

firing were not significantly different between groups. 

 

Activity of increasing-type neurons was attenuated after PNE 

A single cell example of increasing-type neuron firing is illustrated in Figure 3.3. 

This particular neuron was selective for trial-type and response direction in that activity 

was stronger for STOP trials and for movements made to the right. The direction that 

elicited the strongest average firing (in this case, right) will be referred to as the cell’s 

preferred direction. 
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Figure 3.3. Neural firing of characteristic increasing-type cells on correct trials. Firing for both 

left and right directions are shown. Shown above, each histogram is a raster plot. On these plots, 

rows represent trials and columns represent times during the trials. The histogram is a sum of the 

spikes during each individual time point across all trials of that trial-type during the session. The 

direction indicates the final well.  

 

The average firing over all increasing-type neurons, broken down by trial-type, is 

illustrated in Figure 3.4A and 3.4B for controls and PNE rats, respectively. Neural 

activity is aligned to port exit (stop-signal onset) and fluid well entry. Since roughly 

equal numbers of neurons fired more or less strongly for left and right movements, 

population activity was divided into each cell’s preferred and non-preferred direction for 

these plots. As defined by our analysis, activity in the preferred direction (Figure 3.4A 

and 3.4B, thick) is stronger than activity in the non-preferred direction (Figure 3.4A and 

3.4B, thin).  

When comparing average firing between control and PNE rats (Figure 3.4A 

versus 3.4B), the most striking difference between them is the overall reduction in mPFC 

firing regardless of trial-type or direction. This is apparent during early baseline firing 

and during the 2 s after initiation of the behavioral response (port exit). Average firing 

from 4 to 2 s prior to the initiation of the movement was 4.77 spikes/s and 4.07 spikes/s 

for controls and PNE rats, respectively (t-test; p < 0.05). Average firing during the 2 s 

after initiation of the movement was 6.28 spikes/s and 4.86 spikes/s for controls and PNE, 

respectively (t-test, p < 0.05). Thus, the mPFC in PNE rats was hypoactive compared to 

that of control rats. 
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Stop-signal encoding in mPFC was not disrupted after PNE 

Although neural firing in PNE rats was attenuated as compared to control rats, the 

average population histograms suggest that the strength of selectivity for different trial-

types was unaffected. For both control and PNE rats, activity appeared to be slightly 

higher for STOP relative to GO trials for responses made in the preferred direction 

(Figure 3.4A and 3.4B; solid red versus solid green). Although overall activity was 

reduced in PNE rats, the difference between STOP and GO trials in the preferred 

direction did not appear to be weaker in PNE rats. To quantify differences between STOP 

and GO trials, we computed a stop index defined as the difference between STOP and 

GO trial activity ((STOP - GO)/(STOP + GO)) for each neuron. The distributions of these 

indices for preferred and non-preferred directions are plotted in Figure 3.4C-3.4F. 

In these plots, a shift in the positive direction indicates that more neurons fired 

more strongly for STOP than for GO trials compared to those showing the opposite effect 

(i.e. stronger firing for GO relative to STOP trials). In the preferred direction, the shift 

was significant and positive for PNE rats only; however, the two distributions did not 

significantly differ from each other (Figure 3.4C versus 3.4E; control versus PNE). In 

PNE rats, the counts of neurons that fired significantly more strongly for STOP relative 

to GO trials outnumbered those showing the opposite effect (Figure 3.4, black bars; χ², p 

< 0.05); however, this difference in control rats was not more than expected by chance, 

and the frequency of effects were not significantly different across groups. In the non-

preferred direction, stop indices for control and PNE rats were not significantly shifted 

from zero or from each other. We conclude that PNE attenuates firing of increasing-type 
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neurons but does not alter selectivity related to STOP and GO trial-types. 

  

Directional selectivity of increasing-type neurons was not disrupted after PNE 

As described previously, firing of neurons in mPFC was highly directional. 44% 

and 27% of increasing-type neurons in control rats and PNE rats, respectively, exhibited 

significantly different firing between left and right on GO trials. Although there was a 

17% reduction in the number of neurons that exhibited activity that was directionally 

selective, this reduction was not significant (χ²; p = 0.058). To further assess the 

directional encoding for each trial-type, we computed a directional index ((preferred - 

non-preferred)/(preferred + non-preferred)) during the response epoch independently for 

STOP and GO trials. By defining preference based on the average over STOP and GO 

trials, this analysis allows us to ask if the distribution of directional indices is different 

between the two trial types. During both GO and STOP trials, the directional index 

distribution was shifted significantly above zero in both groups, and there was no 

significant difference between the control and PNE distributions. We conclude that PNE 

attenuates firing of increasing-type neurons but does not alter selectivity related to 

response direction on correct trials. 

Directional responding implies that mPFC is involved in executive functions 

pertaining to the direction of the response. If directional signals in mPFC are important 

for directing behavior, then they should be attenuated on errors. Consistent with this 

hypothesis, the mean of the distribution was significantly reduced on STOP errors 

compared to correct STOP trials, suggesting that without substantial directional 

selectivity, errors were made (p < 0.001). The reduction in directional selectivity during 

error trials was present in both groups and there was no significant difference between 
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them. Although weaker, the means of the distributions were still positive, suggesting that 

activity in mPFC better reflected the nature of the movement, not the sensory stimulus 

that triggered it. 

 

 
 

Figure 3.4. (a,b) Average firing rate over time aligned on port exit (a) and well entry (b) 20% 

and 25% of neurons from control and PNE rats significantly increased firing above baseline, 

respectively (χ²; p = 0.08). Activation during the response was significantly reduced in PNE rats 

(4.85 versus 6.28 spikes/s; Wilcoxon; p < 0.001). (c-f) Histograms of the stop index are shown 

for each group. Activity was slightly stronger on STOP trials in the preferred direction as 

indicated by a positive shift in stop index distributions. The shift was significant only in PNE rats 

(e), but the two groups did not significantly differ between (c) and (e). (g-l) Histograms of the 

directional index versus normalized firing are shown. 44% and 27% (χ²; p = 0.06) of increasing-
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type neurons from control and PNE rats, respectively, exhibited significantly different firing 

between preferred and non-preferred (black bars). In both groups, the strength of the directional 

response was significantly reduced on STOP errors as shown in (h) versus (i) and (k) versus (l). 

  

Activity of decreasing-type neurons was attenuated after PNE, but encoding was 

unaffected. 

The average firing over all decreasing-type neurons, delineated by trial-type, is 

illustrated in Figure 3.6 for controls and PNE rats. As for increasing-type neurons, 

average firing appeared to be attenuated for PNE rats. This was significant for activity 

after the response (4.64 spikes/s versus 3.79 spikes/s; Wilcoxon; p < 0.05) but not during 

the 2 s epoch preceding initiation of the trial (6.16 spikes/s versus 5.19 spikes/s; 

Wilcoxon; p = 0.16). 

As for increasing-type neurons, neural activity appeared higher for STOP 

compared to GO trials for responses made in the preferred direction for both controls and 

PNE rats (Figure 3.5: example; Figure 3.6A and 3.6B; population firing). As above, stop 

indices (Figure 3.6C-F) and directional indices (Figure 3.6G-L) were computed for each 

decreasing-type neuron during the response epoch for both controls and PNE rats and 

compared against each other. 

The shift in the stop index was significant and positive for both control and PNE 

rats. Furthermore, neurons that fired significantly more strongly under STOP trials were 

in the significant majority (χ²; p < 0.05). Stop index distributions and frequency of effects 

did not significantly differ between groups. We conclude that PNE attenuates firing of 

decreasing-type neurons but does not alter selectivity related to trial-type (i.e., STOP 

versus GO). 
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The strength of directional encoding for decreasing-type neurons was unaffected 

by PNE. 28% and 23% of decreasing-type neurons in controls and PNE exhibited 

significantly different firing between left and right response directions, respectively. The 

counts of neurons that were directionally tuned were more than expected from chance 

alone and did not differ significantly between control and PNE rats (χ²; p = 0.46). For 

both groups, the positive shift in the directional index was significantly shifted for both 

GO and STOP trial-types, and there was no difference between control and PNE 

distributions (Figure 3.6C-F). Finally, as with increasing-type neurons, the strength of 

directional tuning was significantly reduced on error trials (Figure 3.6I and 3.6L). We 

conclude that overall firing of decreasing-type cells in mPFC was attenuated after PNE, 

but directional encoding remained intact. 

 

Figure 3.5. Plots of neural firing of characteristic decreasing-type cells. Firing for both left and 
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right directions are shown. Shown above, each histogram is a raster plot. On these plots, rows 

represent trials and columns represent times during the trials. The histogram is a sum of the 

spikes during each individual time across all trials of that trial-type during the session. The 

direction indicates the final well. 

 

 

Figure 3.6. Average firing over all decreasing type neurons. (a,b) 31% and 34% of neurons 

from control and PNE rats significantly decreased firing below baseline, respectively (χ²; p = 

0.47). Activation during the response was significantly reduced in PNE rats (3.79 versus 4.64 

spikes/s; Wilcoxon; p < 0.05). (c-f) Activity was stronger on STOP trials in the preferred 

direction as indicated by a significant positive shift in stop index distributions for both control (c) 

and PNE rats (e). The two groups did not significantly differ from each other as shown in (c) 

versus (e). (g-l) 28% and 23% (χ²; p = 0.46) of decreasing-type neurons exhibited significantly 
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different firing between left and right response directions (black bars). In both groups, the 

strength of the directional response was significantly reduced on STOP errors as shown in (h) 

versus (i) and (k) versus (l). 

 

Activity in mPFC was positively correlated with movement time and percent correct 

The data described above demonstrates that mPFC is hypoactive after PNE. 

Remarkably, even with reduced activation, neural encoding of task parameters was not 

significantly altered. The fact that activity is generally reduced after PNE and that PNE 

rats are faster and less accurate on STOP trials suggests that firing in mPFC should be 

correlated with movement time and accuracy. To address this question, we asked if 

neural activity was correlated with movement time and percent correct separately for 

increasing- and decreasing-type neurons from both groups. 

Response-related activity of increasing-type neurons was positively correlated 

with percent correct but not movement time. Significant firing correlations with percent 

correct were present in both control (Figure 3.7A) and PNE rats (Figure 3.7B), but was 

weaker in PNE rats. Activity of decreasing-type neurons was positively correlated with 

movement time (Figure 3.7G) but not percent correct (Figure 3.7E) during the same 

response period. The correlation was not significant in PNE rats. The results suggest that 

higher firing in mPFC is linked to slower responses and better performance, and that 

when mPFC activity is reduced, rats are faster and less accurate as observed after PNE. 
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Figure 3.7. Percent correct and movement time versus firing. Plots of firing rate versus percent 

correct for all trial types are shown for increasing (a,b) and decreasing (e-f) type cells. Each dot 

represents a single neuron. Plots of firing rate versus movement time for increasing (c,d) and 

decreasing (g,h) type cells are shown. Activity was positively correlated with percent correct 

(a,b) but not movement time (c,d) for increasing-type cells. The correlation between increasing-

type cell firing rate and percent correct for all trial types was weaker in PNE rats (b). Activity 

was positively correlated with movement time (g,h) but not percent correct (e,f) for decreasing-

type cells. There was no significant correlation between firing and movement time in PNE rats 

(h). 

 

Discussion 

This discussion aims to provide context for the results, substantiate them with 

evidence from previous research, and elicit further questions to help understand the 

processes of impulsivity and ADHD. This section delves into the significance of the PNE 

rats’ behavior during the SST and alterations to physiology as compared to controls, 
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discusses the importance of the mPFC during task performance, and describes the link 

between PNE, ADHD, and the multitude of neural circuits involved in impulsivity. 

In this study, we show that PNE rats were faster than controls over all trial-types 

and made more errors on STOP trials (i.e., they were less able to inhibit behavior when 

instructed). Although neural activity in the mPFC was hypoactive after PNE, the number 

of increasing- and decreasing-type neurons did not significantly differ between controls 

and PNE rats and the ability to complete the task was not lost in PNE rats. Firing of 

mPFC correlated with executive function necessary to perform this behavioral task. 

Activity was significantly stronger on STOP trials relative to GO trials and the majority 

of neurons exhibited a directional preference. On errors, the strength of the directional 

signal was attenuated, suggesting that the strong directional signal on correct trials was 

necessary for accurate performance. Furthermore, activity of increasing and decreasing-

type neurons was positively correlated with percent correct and movement time, 

respectively. Thus, rats were more accurate and slower during performance of this task 

when activity in the mPFC was higher. When activity was low, rats tended to be faster 

and performance tended to be poor. We conclude that PNE makes rats more impulsive, 

most likely due to hypoactivation of neurons in mPFC that are important for executive 

control and response inhibition. 

 

Comparison between PNE and ADHD  

Here, we compare our PNE results with relevant work done in the human ADHD 

population. We will first focus on behavior during stop-signal performance, and then 

discuss neural components relevant to executive function and response inhibition. Finally, 

we will summarize how these parameters establish validity for PNE as an animal model 
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of ADHD. 

Behavior 

In the present study, we show that PNE rats were more impulsive on a SST. 

Notably, our PNE rats showed no signs of deficits beyond performance on our behavioral 

task. They performed the same number of trials and were actually faster to perform trials 

relative to controls. In contrast to these findings regarding PNE rats’ performance on GO 

trials, most, but not all, stop-signal studies of humans with ADHD demonstrate slower 

reaction times on GO trials to humans without the disorder (Schachar et al., 2000; 

Alderson et al., 2008). This discrepancy may arise from several factors. One fundamental 

difference between the rat and human versions of the task is that the rat task chamber 

presents a single light stimulus against a backdrop of deprived stimulation (almost 

complete darkness and constant background noise from the computer) while the human 

SST is administered on a computer in an environment that is more stimulating. Perhaps 

distractions outside the task at hand may slow performance on GO trials, whereas when 

in isolation, attention-grabbing stimuli are more salient promoting faster reaction times. 

In addition, we administered immediate, external reinforcement following each 

successful trial, which has been shown to improve performance to the same degree as an 

administration of methylphenidate in children with ADHD and to a greater degree in 

children with ADHD than in unaffected children (Strand et al, 2012). Thus, this reward 

could have accounted for the decreased movement times on all trial types as a function of 

motivation. There is a need to analyze the behavior of humans with ADHD and rats with 

ADHD-like symptoms on the SST with specific task design choices that test this 

hypothesis, such as inclusion of distraction tones or lights.  
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Another difference between rats and humans is the nature of the learning process 

for this task. Human participants learn the SST via verbal instruction while rats learn this 

task through operant conditioning. There may be something about the difference in 

learning approach that is captured in these behavioral results. Another difference involves 

the motivation behind the performance of the task. The rats are highly motivated to 

complete the task because of their water deprivation and are playing for immediate 

reinforcement. Humans completing a SST do not have these same conditions and so their 

motivation will probably differ. Testing these predictions in human subjects might shed 

light to underlying mechanisms that may be disrupted in patients with ADHD-like 

symptoms. 

If further research into human stop-signal performance was tailored to match the 

conditions used in rat studies (motivational factors, extended training periods, and 

operant learning procedures), then the nature of these behavioral differences could be 

clarified. An alternative explanation of the difference in trial accuracy and speed could 

relate to the level of PNE. The level of nicotine dosage in our study could have been a 

“sweet spot” of exposure, in which rats’ behavior was impaired but not so much as to 

affect the ability to perform the task. Therefore, the offspring of mothers exposed to 

higher concentrations of nicotine could show greater behavioral deficits, while mothers 

exposed to lower concentrations of nicotine could show fewer or no behavioral deficits. 

Additional studies in which mothers are exposed to varying concentrations of nicotine 

would help elucidate the possible dose-dependency of these behavioral deficits. 

Potentially interesting findings of such a study would be threshold or ceiling effects from 

the varying levels of PNE. 
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Neural Activity 

Here, we show that mPFC is hypoactive in PNE rats during performance of the 

SST. Although many brain areas are disrupted with PNE and in ADHD as discussed 

below and in the literature review, mPFC activity is consistently reduced in ADHD 

patients (Emond, Joyal, & Poissant, 2009) as well as in animal models that use PNE. In 

biology, there is a strong correlation between anatomical structure and functionality. 

Thus, anatomical abnormalities, from cellular to organ scale, often surface as changes in 

functionality. Anatomical analysis of ADHD has focused on the frontal lobe because of 

its crucial role in decision-making, reward, attention, and memory tasks. Past anatomical 

studies using MRI have revealed structural differences in the frontal lobe, including PFC, 

between ADHD patients and non-ADHD subjects. One study that compared 12 children 

with ADHD to age-matched controls observed a decreased volume of PFC in the children 

with ADHD compared to the controls (Mostofsky et al., 2002; Krain & Castellanos, 

2006). Several functional studies (fMRI) have demonstrated that these prefrontal areas, 

including mPFC, play a critical role in response inhibition and are hypoactive in children 

and adults with ADHD (Emond, Joyal, & Poissant, 2009). 

Similar results have been described in adolescents performing a GO/NO-GO task, 

another task that assesses impulsivity. Like the SST, the GO/NO-GO task builds a 

habitual prepotent response by having the large majority of trials be GO trials. In this 

version of the task, letters were presented one at a time on a computer monitor and 

subjects were told to push a button for all letters except the letter “V.” The majority 

letters were not V’s, thus it was difficult to inhibit the behavior, similar to “stopping” on 

STOP trials. Consistent with ADHD, activation in several brain areas was disrupted in 
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children exposed to nicotine. Most relevant to our results was the finding that 

significantly more voxels, or equal volumes of brain displaying activation, analogous to 

pixels on a screen, were present in unexposed children relative to nicotine exposed 

children during response inhibition (i.e., activation on correct NO-GO trials minus correct 

GO trials) (Bennett, 2009). 

 Thus, overall behavioral and neural effects appear to be fairly consistent between 

PNE and ADHD, further suggesting the PNE is a useful animal model to better 

understand the neural underpinnings of ADHD-like behaviors and develop new 

treatments. 

Validity 

Here, we present further evidence that the PNE rat could be a valid model of 

ADHD symptoms, specifically symptoms of impulsivity. ADHD is prevalent in the 

children of mothers who smoke tobacco during pregnancy and in controlled fetal nicotine 

trials using animal models, which suggests a causal link between developmental nicotine 

exposure and impulsivity (Wasserman et al., 2001). We first maintained construct 

validity by administering nicotine in a manner and dosage that mimics human mothers 

smoking during pregnancy. Furthermore, we focused on nicotine rather than other 

elements ingested from tobacco due to this causal link. Next, we maintained face validity 

by demonstrating a quantifiable significant increase in impulsive behavior in PNE rats as 

compared to controls. This model has been previously shown to have hyperactivity in 

PNE mice; though our own results did not show significant difference in hyperactivity 

(Zhu et al., 2012). This simply suggests that different doses of nicotine exposure may be 

needed to induce quantifiable differences in each ADHD symptom. Finally, we 
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established predictive validity by recording from individual neurons in mPFC. The 

patterns of hypoactivity across the mPFC during SST performance as measured by 

single-unit recordings is consistent with patterns of hypoactivity measured by fMRI 

studies of human ADHD subjects during the same task (Cortese et al., 2012). This 

suggests that PNE rats could be further used to predict single neuron activity in children 

with ADHD during impulsivity tasks. 

 

Relation to other rodent prenatal nicotine studies 

Our work is consistent with a previous rat study using the same dose of nicotine 

in drinking water as the method of drug administration. In that study, rats also performed 

a battery of sensorimotor tasks at different developmental milestones to further assess the 

impact of nicotine exposure. PNE rats in this study exhibited deficits during performance 

on the 5-CSRTT, which assesses attention and impulse control, as well as lower birth 

weights and delayed sensorimotor development. Importantly, these developmental 

differences were not apparent later in life when cognitive testing was performed 

(Schneider et al., 2011). Thus, it is unlikely that other developmental problems beyond 

those related to attention and impulse control can account for the differences observed 

during performance of our SST. 

 Studies in mice have shown that PNE groups were significantly more active than 

controls in a locomotor activity test, suggesting increased hyperactivity even into 

adulthood (Ajarem & Ahmad, 1998). A 2012 study by Zhu et al. similarly showed a 

relationship between PNE and the development of hyperactivity that was correlated with 

decreased cingulate volume and increased sensorimotor volume, as well as decreased 

dopamine turnover in the frontal cortex. Interestingly, elevated levels of hyperactivity as 
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measured by locomotor tests can be restored to normal levels with methylphenidate, 

suggesting the reversibility of the effects of PNE (2012). 

Although our PNE rats were significantly faster on both GO and STOP trials, 

suggesting that they might also have exhibited increases in hyperactivity, we saw no 

effects on locomotion. All rats, not only those used for the SST and neural recordings, 

were tested at postnatal day 30 for their locomotion activity. There was no significant 

difference between the two groups. This finding is inconclusive specifically with regard 

to hyperactivity. For the most part, increased locomotion has been correlated with PNE 

(Ajarem & Ahmad, 1998). However, studies have also demonstrated no significant 

change in locomotion after PNE (Martin & Becker, 1970). While it is tempting to use an 

apparent increase in locomotion to support the association of PNE with ADHD-like 

symptoms, the varying findings do not fully support this correlation. Rather, cognitive, 

attentional, and response inhibition deficits associated with PNE should be the basis for 

this claim (Ernst, Moolchan, & Robinson, 2001). At the very least, our work suggests that 

cognitive deficits can be observed in the absence of hyperactivity.  

Lastly, it is worth mentioning recent work demonstrating that hyperactivity 

observed in mice after PNE transmits across generations. As in our study, pregnant 

animals were given nicotine via drinking water. Remarkably, the study found that 

hyperactivity, caused by PNE, was transmitted from one generation to the next through 

the maternal line. This suggests that transgenerational transmission can result in 

propagation of environmentally induced ADHD-like behaviors in the human population 

and fits well with proposed genetic and environmental factors associated with the 

etiology of ADHD (Zhu, Lee, Spencer, Biederman, & Bhide, 2014). 
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Race Model and mPFC 

A model that can potentially explain why hypoactivity in mPFC can result in 

increased impulsivity is the race model. The race model considers the STOP and GO 

processes (inhibiting and initiating movements, respectively) to be independent from 

each other. In this study, the GO process is the impetus for the rat to go to the first well 

following the flash of light indicating direction. The STOP process, which occurs on 20% 

of trials, is the process by which the rat reacts to the second light, or stop-signal. These 

two processes that control a movement or the inhibition of a movement compete with 

each other and the one that reaches threshold first controls the movement (Logan, Cowan, 

& Davis, 1984). If neurons in mPFC are hypoactive, then they are most likely going to 

lose the race with the other areas that are unaffected by PNE. SSRT is a measure of this 

race model; a greater SSRT indicates that the GO process was stronger than the STOP 

process and thus the STOP process took longer to override the GO process to correctly 

inhibit movement. This fits with the finding that PNE rats are worse at inhibiting an 

already initiated movement and that activity in mPFC is correlated with accuracy and 

movement time.  

This work is consistent with the mPFC’s critical role during performance of 

standard SSTs. Specifically, previous research that temporarily inactivated mPFC showed 

that dorsal mPFC areas are crucial for inhibiting an already initiated response during 

STOP trials. They further showed that injection of noradrenaline reuptake inhibitor 

atomoxetine, a drug approved to treat ADHD, into mPFC improved task performance 

(Bari et al., 2011). Our results can provide context for these findings. One possible 
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mechanism by which this drug improved response inhibition is by increasing the activity 

of hypoactive neurons in mPFC necessary for performance of this task. Indeed, it has 

been shown that administration of atomoxetine, a selective noradrenaline reuptake 

inhibitor used to treat ADHD, increases fos-like immunoreactivity, a histological marker 

indicating neural activity (Bymaster, 2002). In addition, prolonged cocaine-self 

administration leads to mPFC hypoactivation which can be rescued through optogenetic 

stimulation, further suggesting that mPFC hypoactivation causes a loss of inhibitory 

control (Chen et al, 2014). 

 

Other brain areas involved  

Although our work points to disruption of mPFC function, it is also necessary to 

consider the impact of PNE on other neural circuits and systems. A review of the effects 

of nicotine on the development of the nervous system further suggests that a relationship 

exists between PNE and deficits in attentional control and sensory processing (Heath & 

Picciotto, 2009). Nicotine is a teratogen that crosses the placental blood barrier and 

disrupts fetal development of central neurotransmitter systems, including dopaminergic 

and monoaminergic systems (Slotkin et al., 1987; Navarro et al., 1989; Oliff & Gallardo, 

1999). PNE causes a multitude of neurochemical changes, including reduced DNA 

synthesis, altered neurotransmitter function, and cortical morphogenesis (Wickström, 

2007). These changes occur during critical periods of neonatal brain development, 

leading to changes in brain area volumes, firing patterns, neurotransmitter concentrations, 

and receptor density. These alterations are present in areas responsible for impulse 

inhibition and cognitive focus, such as the ACC (Nomura et al., 2010; Zhu et al., 2012). 
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PNE can result in disruption of these mechanisms critical for normal division, 

differentiation, and migration of neurons via binding to nAchR, leading to several 

behavioral abnormalities (Represa & Ben-Ari, 2005; Heath & Picciotto, 2009). Even if 

PNE is not the perfect model of ADHD-like symptoms, it gives us insight into how the 

brain controls these types of behaviors and what mechanisms are disrupted in animals 

with poor impulse control. 

PNE was also found to increase the expression of dopamine receptors genes in 

striatum and dopamine turnover in frontal cortex (Schneider et al., 2011). During prenatal 

neural development, acetylcholine binds to the nAchR, stimulating the release of 

dopamine. This dopamine guides neurons to divide, differentiate into their specialized 

cell types, and migrate to their permanent location. However, nicotine competitively 

binds to nAchR, such that when the fetal brain is exposed to nicotine during gestation, the 

neurons are guided improperly and sensory processing may be impaired, leading to 

behavioral alterations (Heath & Picciotto, 2009). Furthermore, this overstimulation of 

nAchR leads to a dopamine deficit later in development due to downregulation of 

dopamine receptors. Dopamine is important for executive control in the PFC, and a 

deficit leads to problems with attention, impulse control, and hyperactivity (Robbins & 

Everitt, 1987: Eagle, Bari & Robbins, 2008). Thus, PNE can impact many components of 

brain function, both inside and outside the mPFC circuit. However, our work points to 

mPFC as being a critical node in the development of poor impulse control. 

Our study clearly shows that PNE makes rats more impulsive. Although many 

other brain mechanisms are likely to be involved, our work points to mPFC as a critical 

component. Based on this finding and the existence of a positive correlation between 



` 66 

activity and behavioral performance, this work suggests that global increases in mPFC 

firing may improve performance in animals performing tasks that assess executive 

control and response inhibition. Further studies using pharmacological or optogenetic 

stimulation methods are necessary to test this hypothesis. Despite the multitude of effects 

that occur due to exposure to nicotine during pregnancy, restoring firing in the mPFC 

may be an effective method of ADHD treatment. 

 

Conclusions 

Is PNE a good model of ADHD? 

The literature provides a strong argument for PNE’s role as a model of ADHD 

and the research conducted in this study helps to further cement this role. Numerous 

studies on the behavioral, genetic, anatomical, and pharmacological effects of PNE 

demonstrate how it may be the closest model of ADHD available today. The research 

performed in this current study emphasizes the effects of PNE on impulsivity and the 

neural activity of mPFC. PNE rats were significantly more impulsive on the SST; they 

performed all trial types more quickly and were less accurate on STOP trials. PNE rats 

also demonstrated global hypoactivity in mPFC, specifically during performance of the 

SST. Thus, this study serves as additional evidence that PNE has potential as a model of 

ADHD. 

The limitations of this study are that the genetic and pharmacological aspects of 

the model are unassessed and that the behavior involving performance on GO trials does 

not completely match that seen typically in humans with ADHD. This might reflect a 

number of factors including task design, learning, motivation, and nicotine doses, as laid 
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out above. Future research should attempt to augment these findings by including genetic, 

neurophysiological, and pharmacological evidence for the model’s validity. Specifically, 

analysis should delve into the effects of PNE on the genetics and expression of nicotinic 

acetylcholine receptors and dopamine receptors. It should also investigate how drugs like 

methylphenidate and amphetamine affect physiology, task performance, and neural 

activity. This research needs to be conducted in mPFC as well as in brain areas that it is 

connected to such as orbitofrontal cortex, ventral striatum, and basal ganglia. Optogenetic 

experiments can help determine how circuits between areas like mPFC and ventral 

striatum are encoded to produce task-relevant behavior; they can also be employed to 

investigate whether stimulation of mPFC can reverse the effects of PNE on task 

performance. These studies will provide further support and context for the PNE model 

and validate its connections to the causation and manifestation of ADHD. 
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Appendix A: Institutional Animal Care and Use Committee Protocol 
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Appendix B: Sample Data Collection Sheets 
 

Appendix B1: Water log for mothers. 
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Appendix B2. Weight log for pups. 
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Appendix B3. Behavioral task recording log. 
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Appendix B4. Surgery sheet. 
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Appendix B5. Single-unit recording log. 
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Appendix B6. Electrode advancements log. 
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Appendix C: Experimental Protocols 
 

 



` 97 

 



` 98 

 

 



` 99 

 



` 100 

 



` 101 

 



` 102 

 



` 103 

 



` 104 

 
 
 
 
 
 
 
  
 
 
 
 
 



` 105 

Appendix C1. Electrode protocol. Courtesy of the Schoenbaum lab. 
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Appendix C2. Behavioral task training protocol. 
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Appendix D: MATLAB Data Analysis Script 
 

align = 16; 
pre = -5; 
post = 5; 
 
e1start = 22; 
add_to_e1start = -2; 
e1stop = 22; 
add_to_e1stop = -1; 
 
e2start = 16; 
add_to_e2start = 0; 
e2stop = 17; 
add_to_e2stop = 0; 
 
for cell_count = 1:24; 
%control below baseline 
if cell_count ==1 load tr12112020;  cell=sig001a_1;hem=1; end 
if cell_count ==2 load tr84110620;  cell=sig008a_1;hem=1; end 
if cell_count ==3 load tr84110720;  cell=sig004a_1;hem=1; end 
if cell_count ==4 load tr84122820;  cell=sig006a_1;hem=1; end 
if cell_count ==5 load tr84122720;  cell=sig004a_1;hem=1; end 
if cell_count ==6 load tr84122020;  cell=sig004a_1;hem=1; end 
if cell_count ==7 load tr84122020;  cell=sig004b_1;hem=1; end 
if cell_count ==8 load tr84121920;  cell=sig001a_1;hem=1; end 
if cell_count ==9 load tr84121920;  cell=sig003a_1;hem=1; end 
if cell_count ==10 load tr84121920;  cell=sig003b_1;hem=1; end 
if cell_count ==11 load tr84121820;  cell=sig002a_1;hem=1; end 
if cell_count ==12 load tr84121820;  cell=sig008a_1;hem=1; end 
if cell_count ==13 load tr84121720;  cell=sig001a_1;hem=1; end 
if cell_count ==14 load tr84121420;  cell=sig004a_1;hem=1; end 
if cell_count ==15 load tr84121320;  cell=sig001a_1;hem=1; end 
if cell_count ==16 load tr84121320;  cell=sig008a_1;hem=1; end 
if cell_count ==17 load tr84121220;  cell=sig004a_1;hem=1; end 
if cell_count ==18 load tr84121120;  cell=sig001a_1;hem=1; end 
if cell_count ==19 load tr84121020;  cell=sig006a_1;hem=1; end 
if cell_count ==20 load tr84120720;  cell=sig003a_1;hem=1; end 
if cell_count ==21 load tr84120620;  cell=sig006a_1;hem=1; end 
if cell_count ==22 load tr84120620;  cell=sig006b_1;hem=1; end 
if cell_count ==23 load tr84120320;  cell=sig003a_1;hem=1; end 
if cell_count ==24 load tr84113020;  cell=sig007a_1;hem=1; end 
 
%Use lights on (LO) and light off (LF) for start and 
%stop of each trials. 
 
%Use correct ITI (CI) to split into correct trials only 
light_on=[]; 
 
all_trials = cat(2,LO,LF); 
all_trials(:,3:40) = -999; 
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%column 3 = reward delivered on left 
b=1; 
for a = 1:length(all_trials(:,1)), 
if b > length(StrobedDIO00252(:,1)) 
    break 
end     
if StrobedDIO00252(b,1) < all_trials(a,2) &&  
StrobedDIO00252(b,1) > all_trials(a,1) 
all_trials(a,3) = StrobedDIO00252(b,1); 
b=b+1; 
else 
all_trials(a,3) = -999; 
end 
end 
 
%column 4 = reward delivered on right 
b=1; 
 
for a = 1:length(all_trials(:,1)), 
if b > length(StrobedDIO00253(:,1)) 
    break 
end     
if StrobedDIO00253(b,1) < all_trials(a,2) &&  
StrobedDIO00253(b,1) > all_trials(a,1) 
all_trials(a,4) = StrobedDIO00253(b,1); 
b=b+1; 
else 
all_trials(a,4) = -999; 
end 
end 
 
%column 5 = 1st odor used 
b=1; 
for a = 1:length(all_trials(:,1)), 
if b > length(StrobedDIO00002(:,1)) 
    break 
end     
if StrobedDIO00002(b,1) < all_trials(a,2) &&  
StrobedDIO00002(b,1) > all_trials(a,1) 
all_trials(a,5) =  StrobedDIO00002(b,1); 
b=b+1; 
else 
all_trials(a,5) = -999; 
end 
end 
 
%column 6 = 2nd odor used 
b=1; 
for a = 1:length(all_trials(:,1)), 
if b > length(StrobedDIO00003(:,1)) 
    break 
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end     
if StrobedDIO00003(b,1) < all_trials(a,2) &&  
StrobedDIO00003(b,1) > all_trials(a,1) 
all_trials(a,6) = StrobedDIO00003(b,1); 
b=b+1; 
else 
all_trials(a,6) = -999; 
end 
end 
 
%column 7 = stop signal on 
b=1; 
for a = 1:length(all_trials(:,1)), 
if b > length(StrobedDIO00302(:,1)) 
    break 
end     
if StrobedDIO00302(b,1) < all_trials(a,2) &&  
StrobedDIO00302(b,1) > all_trials(a,1) 
all_trials(a,7) = StrobedDIO00302(b,1); 
b=b+1; 
else 
all_trials(a,7) = -999; 
end 
end 
 
%column 8 = stop signal off 
b=1; 
for a = 1:length(all_trials(:,1)), 
if b > length(StrobedDIO00303(:,1)) 
    break 
end     
if StrobedDIO00303(b,1) < all_trials(a,2) &&  
StrobedDIO00303(b,1) > all_trials(a,1) 
all_trials(a,8) = StrobedDIO00303(b,1); 
b=b+1; 
else 
all_trials(a,8) = -999; 
end 
end 
 
%FIND TIME OF WHEN BROKE BEAM IN LEFT WELL 
b=1; 
for a = 1:length(all_trials(:,1)) 
if b > length(WPL(:,1)) 
    break 
end     
if WPL(b,1) < all_trials(a,2) &&  WPL(b,1) > all_trials(a,1) 
all_trials(a,12) = WPL(b,1); 
b=b+1; 
else 
all_trials(a,12) = -999; 
end 
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end 
 
%FIND TIME OF WHEN BROKE BEAM IN RIGHT WELL 
b=1; 
for a = 1:length(all_trials(:,1)), 
if b > length(WPR(:,1)) 
    break 
end     
if WPR(b,1) < all_trials(a,2) &&  WPR(b,1) > all_trials(a,1) 
all_trials(a,13) = WPR(b,1); 
b=b+1; 
else 
all_trials(a,13) = -999; 
end 
end 
 
%FIND TIME OF WHEN LEFT THE LEFT WELL 
b=1; 
for a = 1:length(all_trials(:,1)), 
if b > length(WUL(:,1)) 
    break 
end     
if WUL(b,1) < all_trials(a,2) &&  WUL(b,1) > all_trials(a,1) 
all_trials(a,14) = WUL(b,1); 
b=b+1; 
else 
all_trials(a,14) = -999; 
end 
end 
 
%FIND TIME OF WHEN LEFT THE RIGHT WELL 
b=1; 
for a = 1:length(all_trials(:,1)), 
if b > length(WUR(:,1)) 
    break 
end     
if WUR(b,1) < all_trials(a,2) &&  WUR(b,1) > all_trials(a,1) 
all_trials(a,15) = WUR(b,1); 
b=b+1; 
else 
all_trials(a,15) = -999; 
end 
end 
 
%FIND TIME OF WHEN LEFT odor port 
b=1; 
for a = 1:length(all_trials(:,1)), 
if b > length(OU(:,1)) 
    break 
end     
if OU(b,1) < all_trials(a,2) &&  OU(b,1) > all_trials(a,1) 
all_trials(a,16) = OU(b,1); 
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b=b+1; 
else 
all_trials(a,16) = -999; 
end 
end 
 
%well entry time for left and right 
for a = 1:length(all_trials(:,1)), 
if all_trials(a,12) > -999  
    all_trials(a,17) = all_trials(a,12); 
end 
if all_trials(a,13) > -999  
    all_trials(a,17) = all_trials(a,13); 
end 
end 
    
%well exit time for left and right 
for a = 1:length(all_trials(:,1)), 
if all_trials(a,14) > -999  
    all_trials(a,18) = all_trials(a,14); 
end 
if all_trials(a,15) > -999  
    all_trials(a,18) = all_trials(a,15); 
end 
end 
 
%reward delivered right and left 
for a = 1:length(all_trials(:,1)), 
if all_trials(a,3) > -999  
    all_trials(a,20) = all_trials(a,3); 
end 
if all_trials(a,4) > -999  
    all_trials(a,20) = all_trials(a,4); 
end 
end 
    
%time odor on for all odors 
for a = 1:length(all_trials(:,1)), 
if all_trials(a,5) > -999  
    all_trials(a,22) = all_trials(a,5); 
end 
% if all_trials(a,6) > -999  
%     all_trials(a,22) = all_trials(a,6); 
% end 
if all_trials(a,6) > -999  
    all_trials(a,22) = all_trials(a,6); 
end 
end 
 
%Was the last trial rewarded? 
for a = 2:length(all_trials(:,1)) 
    junk = -999; 
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    if all_trials(a-1,20)>-999 
        junk = all_trials(a-1,20); 
    end 
    all_trials(a,24) = junk; 
end 
 
%last trial went left 
for a = 2:length(all_trials(:,1)) 
       junk = -999; 
        if all_trials(a-1,12)>-999 
            junk = all_trials(a-1,12); 
        end 
        all_trials(a,29) = junk; 
end 
 
%last trial went right 
for a = 2:length(all_trials(:,1)) 
        junk = -999; 
        if all_trials(a-1,13)>-999 
            junk = all_trials(a-1,13); 
        end 
        all_trials(a,30) = junk; 
end 
 
%last trial was left odor 
for a = 2:length(all_trials(:,1)) 
        junk = -999; 
        if all_trials(a-1,5)>-999 
            junk = all_trials(a-1,5); 
        end 
        all_trials(a,31) = junk; 
end 
 
%last trial was right odor 
for a = 2:length(all_trials(:,1)) 
        junk = -999; 
        if all_trials(a-1,6)>-999 
            junk = all_trials(a-1,6); 
        end 
        all_trials(a,32) = junk; 
end 
 
% 2 trials before was left odor     % and correct 
for a = 3:length(all_trials(:,1)) 
        junk = -999; 
        if all_trials(a-2,5)>-999 % & all_trials(a-2,20)>-999  
            junk = all_trials(a-1,5); 
        end 
        all_trials(a,34) = junk; 
end 
 
% 2 trials before was right odor      % and correct 
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for a = 3:length(all_trials(:,1)) 
        junk = -999; 
        if all_trials(a-2,6)>-999  %& all_trials(a-2,20)>-999  
            junk = all_trials(a-1,6); 
        end 
        all_trials(a,35) = junk; 
end 
 
% 3 trials before was left odor            % and correct 
for a = 4:length(all_trials(:,1)) 
        junk = -999; 
        if all_trials(a-3,5)>-999 %& all_trials(a-3,20)>-999  
            junk = all_trials(a-1,5); 
        end 
        all_trials(a,36) = junk; 
end 
 
% 3 trials before was right odor               %and correct 
for a = 4:length(all_trials(:,1)) 
        junk = -999; 
        if all_trials(a-3,6)>-999 % & all_trials(a-3,20)>-999  
            junk = all_trials(a-1,6); 
        end 
        all_trials(a,37) = junk; 
end 
 
%FIND TIME OF WHEN BROKE BEAM IN ODOR PORT 
b=1; 
for a = 1:length(all_trials(:,1)), 
if b > length(OP(:,1)) 
    break 
end     
if OP(b,1) < all_trials(a,2) &&  OP(b,1) > all_trials(a,1) 
all_trials(a,35) = OP(b,1); 
b=b+1; 
else 
all_trials(a,35) = -999; 
end 
end 
 
% REACTION TIME FOR ALL 
all_trials(:,25) = (all_trials(:,16)-all_trials(:,22)) - .5; 
 
% MOVEMENT TIME FOR ALL  
all_trials(:,26) = (all_trials(:,17)-all_trials(:,16)); 
 
% LIGHT ON LATENCY 
all_trials(:,27) = (all_trials(:,22)-all_trials(:,1)) - .5; 
 
% EPOCH OF INTEREST 2 
for a=1:length(all_trials(:,1)) 
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all_trials(a,32) = (length(find(cell(:,1) < 
(all_trials(a,e1stop)+add_to_e1stop)  & cell(:,1) >= 
(all_trials(a,e1start)+add_to_e1start))) / 
((all_trials(a,e1stop)+add_to_e1stop)-
(all_trials(a,e1start)+add_to_e1start))); 
end 
% EPOCH OF INTEREST 2 
for a=1:length(all_trials(:,1)) 
all_trials(a,33) = (length(find(cell(:,1) < 
(all_trials(a,e2stop)+add_to_e2stop)  ... 
& cell(:,1) >= (all_trials(a,e2start)+add_to_e2start)))...  
/ ((all_trials(a,e2stop)+add_to_e2stop)-
(all_trials(a,e2start)+add_to_e2start))); 
end 
 
% 
%AVERAGE FIRING RATE FOR POPULATION HISTOGRAM ALIGNED TO SOME 
EPOCH 
bin_centers=pre:0.1:post; 
  bin_centers = bin_centers - 0.05; 
for a = 1:length(all_trials(:,1)), 
        spike_times_idx = find(cell(:,1) <= 
(all_trials(a,align)+post)  & cell(:,1) >= 
(all_trials(a,align)+pre)); 
        spike_times = cell(spike_times_idx); 
        spike_times_normalized = spike_times - 
all_trials(a,align);  
         hist_trial = hist(spike_times_normalized,bin_centers);     
         all_trials(a,40:(40+length(hist_trial(1,:)))-1) =  
hist_trial; 
end 
%%%%%%% 
 
 
% %Times of when these events happened 
% 1. House Light on 
% 2. House Light off 
% 3. Reward delivered on left 
% 4. Reward delivered on right 
% 5. Odor 1 onset [left] 
% 6. Odor 2 onset [right] 
% 7. Stop signal on 
% 8. Stop signal off 
% 12. Broke beam in left fluid well 
% 13. Broke beam in right fluid well 
% 14. Exited left fluid well 
% 15. Exited right fluid well 
% 16. Exited odor port 
% 17. Well entry time for either left or right 
% 18. Well exit time for left or right 
% 20. Reward delivery for left or right 
% 22. Time of odor onset for all odors 
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% 25. Reaction time 
% 26. Movement time 
% 27. Latency to nosepoke after houselights come on. 
% 32. baseline epoch 
% 33. analysis epoch 
% 40 through end of matrix = spiking over time 
 
% These idx variables will find all trials in a session that fit 
a 
% specific description. The important ones in this code are 
lf_idx and 
% rt_idx, which find all left trials (go and stop) and all right 
trials (go 
% and stop) 
 
go_lf_idx = find(all_trials(:,20)>-999 & all_trials(:,5)>-999 & 
all_trials(:,7)==-999); 
go_rt_idx = find(all_trials(:,20)>-999 & all_trials(:,6)>-999 & 
all_trials(:,7)==-999); 
st_lf_idx = find(all_trials(:,20)>-999 & all_trials(:,6)>-999 & 
all_trials(:,7)>-999); 
st_rt_idx = find(all_trials(:,20)>-999 & all_trials(:,5)>-999 & 
all_trials(:,7)>-999); 
 
lf_idx = find(all_trials(:,20)>-999 & all_trials(:,14)>-999); 
rt_idx = find(all_trials(:,20)>-999 & all_trials(:,15)>-999); 
 
% Firing rate during epoch of interest, odor port exit to well 
entry, for 
% all trial types as well as each type individually 
 
go_lf_epoch = (all_trials(go_lf_idx,33)); 
go_rt_epoch = (all_trials(go_rt_idx,33)); 
st_lf_epoch = (all_trials(st_lf_idx,33)); 
st_rt_epoch = (all_trials(st_rt_idx,33)); 
 
lf_epoch = (all_trials(lf_idx,33)); 
rt_epoch = (all_trials(rt_idx,33)); 
 
%Histogram for firing during the trial, 5 seconds before well 
entry to 5 
%seconds after well entry 
go_lf_hist = all_trials(go_lf_idx,40:length(all_trials(1,:))); 
go_rt_hist = all_trials(go_rt_idx,40:length(all_trials(1,:))); 
st_lf_hist = all_trials(st_lf_idx,40:length(all_trials(1,:))); 
st_rt_hist = all_trials(st_rt_idx,40:length(all_trials(1,:))); 
 
lf_hist = all_trials(lf_idx,40:length(all_trials(1,:))); 
rt_hist = all_trials(rt_idx,40:length(all_trials(1,:))); 
 
%Take the means of each trial epoch firing rate 
lf_epoch_m = mean(lf_epoch); 
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rt_epoch_m = mean(rt_epoch); 
 
go_lf_epoch_m = mean(go_lf_epoch); 
go_rt_epoch_m = mean(go_rt_epoch); 
st_lf_epoch_m = mean(st_lf_epoch); 
st_rt_epoch_m = mean(st_rt_epoch); 
 
% This defines the direction that the cell prefers. 
if lf_epoch_m > rt_epoch_m 
   go_preferred = go_lf_epoch_m; 
   st_preferred = st_lf_epoch_m; 
   go_preferred_hist = go_lf_hist; 
   st_preferred_hist = st_lf_hist; 
   go_nonpreferred = go_rt_epoch_m; 
   st_nonpreferred = st_rt_epoch_m; 
   go_nonpreferred_hist = go_rt_hist; 
   st_nonpreferred_hist = st_rt_hist; 
end 
 
if rt_epoch_m > lf_epoch_m 
   go_preferred = go_rt_epoch_m; 
   st_preferred = st_rt_epoch_m; 
   go_preferred_hist = go_rt_hist; 
   st_preferred_hist = st_rt_hist; 
   go_nonpreferred = go_lf_epoch_m; 
   st_nonpreferred = st_lf_epoch_m; 
   go_nonpreferred_hist = go_lf_hist; 
   st_nonpreferred_hist = st_lf_hist; 
end 
 
% This defines the direction of the trial relative to the 
electrode placement 
go_ipsi = go_rt_epoch_m; 
go_ipsi_hist = go_rt_hist; 
go_contra = go_lf_epoch_m; 
go_contra_hist = go_lf_hist; 
     
st_ipsi = st_rt_epoch_m; 
st_ipsi_hist = st_rt_hist; 
st_contra = st_lf_epoch_m; 
st_contra_hist = st_lf_hist; 
     
if contraipsi == 0 
 go_ipsi = go_lf_epoch_m; 
 go_ispi_hist = go_lf_hist; 
 go_contra = go_rt_epoch_m; 
 go_contra_hist = go_rt_hist; 
 
 st_ipsi = st_lf_epoch_m; 
 st_ipsi_hist = st_lf_hist; 
 st_contra = st_rt_epoch_m; 
 st_contra_hist = st_rt_hist; 
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end 
 
% These eight lines create the histogram means 
go_preferred_hist_m(cell_count,:) = mean(go_preferred_hist); 
st_preferred_hist_m(cell_count,:) = mean(st_preferred_hist); 
go_nonpreferred_hist_m(cell_count,:) = 
mean(go_nonpreferred_hist); 
st_nonpreferred_hist_m(cell_count,:) = 
mean(st_nonpreferred_hist); 
 
go_ipsi_hist_m(cell_count,:) = mean(go_ipsi_hist); 
go_contra_hist_m(cell_count,:) = mean(go_contra_hist); 
st_ipsi_hist_m(cell_count,:) = mean(st_ipsi_hist); 
st_contra_hist_m(cell_count,:) = mean(st_contra_hist); 
 
% These lines define a variety of distributions 
go_pnp_dist = (go_preferred-
go_nonpreferred)/(go_preferred+go_nonpreferred); 
stop_pnp_dist = (st_preferred-
st_nonpreferred)/(st_preferred+st_nonpreferred); 
preferred_dist = (((st_preferred)-
(go_preferred))/((st_preferred)+(go_preferred))); 
nonpreferred_dist = (((st_nonpreferred)-
(go_nonpreferred))/((st_nonpreferred)+(go_nonpreferred))); 
 
go_ci_dist = (((go_ipsi)-(go_contra))/((go_ipsi)+(go_contra))); 
stop_ci_dist = (((st_ipsi)-(st_contra))/((st_ipsi)+(st_contra))); 
contra_dist = (((st_contra)-
(go_contra))/((st_contra)+(go_contra))); 
ipsi_dist = (((st_ipsi)-(go_ipsi))/((st_ipsi)+(go_ipsi)));     
     
% Keep the numbers you want before the end of the loop. 
numbers(cell_count,:) = [go_pnp_dist stop_pnp_dist preferred_dist 
nonpreferred_dist go_ci_dist stop_ci_dist contra_dist ipsi_dist]; 
 
%Clear data 
all_trials = []; 
OU = []; 
cell=[]; 
 
end %this 'end' is the end after it cycles through all cells in 
the very first 
%loop. 
 
go_preferred_pop_m = mean(go_preferred_hist_m,1); 
st_preferred_pop_m = mean(st_preferred_hist_m,1); 
go_nonpreferred_pop_m = mean(go_nonpreferred_hist_m,1); 
st_nonpreferred_pop_m = mean(st_nonpreferred_hist_m,1); 
 
% The following four lines smooth the population histograms. 
go_preferred_pop_m_smooth = smooth(bin_centers, 
go_preferred_pop_m, .1, 'rloess'); 
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st_preferred_pop_m_smooth = smooth(bin_centers, 
st_preferred_pop_m, .1, 'rloess'); 
go_nonpreferred_pop_m_smooth = smooth(bin_centers, 
go_nonpreferred_pop_m, .1, 'rloess'); 
st_nonpreferred_pop_m_smooth = smooth(bin_centers, 
st_nonpreferred_pop_m, .1, 'rloess'); 
 
figure  
plot(bin_centers, go_preferred_pop_m_smooth, 'b'); hold on; 
plot(bin_centers, st_preferred_pop_m_smooth, 'r'); hold on; 
plot(bin_centers, go_nonpreferred_pop_m_smooth, 'g'); hold on; 
plot(bin_centers, st_nonpreferred_pop_m_smooth, 'y'); hold off; 
legend('Go Preferred', 'Stop Preferred', 'Go Nonpreferred', 'Stop 
Nonpreferred'); 
xlabel('Time (s)'); 
ylabel('spikes/s'); 
title('Control Below Baseline, Stop vs Go, Preferred vs 
Nonpreferred'); 
 
bin = -1:.1:1; bin=bin-0.05; 
 
figure 
idx_numbers = 1; 
hist(numbers(:,idx_numbers),bin); hold on; 
axis square 
xlabel('(go_p-go_np)/(go_p+go_np)'); 
ylabel('spikes/s'); 
n = length(numbers(:,idx_numbers)); 
sr = signrank(numbers(:,idx_numbers));  
title(['Control Below Baseline Preferred/Nonpreferred 
Distribution, Go Trials', ' ', num2str(n), ' ', num2str(sr)]); 
axis tight; 
 
figure 
idx_numbers = 2; 
hist(numbers(:,idx_numbers),bin); hold on; 
axis square 
xlabel('(st_p-st_np)/(st_p+st_np)'); 
ylabel('spikes/s'); 
n = length(numbers(:,idx_numbers)); 
sr = signrank(numbers(:,idx_numbers));  
title(['Control Below Baseline Preferred/Nonpreferred 
Distribution, Stop Trials', ' ', num2str(n), ' ', num2str(sr)]); 
axis tight; 
 
figure 
idx_numbers = 3; 
hist(numbers(:,idx_numbers),bin); hold on; 
axis square 
xlabel('(stop-go)/(stop+go)'); 
ylabel('spikes/s'); 
n = length(numbers(:,idx_numbers)); 
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sr = signrank(numbers(:,idx_numbers));  
title(['Nicotine Above Baseline Stop/Go Distribution, Preferred 
Direction', ' ', num2str(n), ' ', num2str(sr)]); 
axis tight; 
 
figure 
idx_numbers = 4; 
hist(numbers(:,idx_numbers),bin); hold on; 
axis square 
xlabel('(stop-go)/(stop+go)'); 
ylabel('spikes/s'); 
n = length(numbers(:,idx_numbers)); 
sr = signrank(numbers(:,idx_numbers));  
title(['Nicotine Above Baseline Stop/Go Distribution, 
Nonpreferred Direction', ' ', num2str(n), ' ', num2str(sr)]); 
axis tight; 
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Glossary 
 

5-choice serial reaction time task (5-CSRTT) - A method of measuring impulsivity and 
visual process in rats. Rats are given a brief visual stimulus, then make a choice from 5 
wells in response to the stimulus. Lower accuracy and higher reaction times are 
correlated with ADHD symptoms. 
 
Acetylcholine - A neurotransmitter which is involved in decision-making and attention, 
among other things. It also guides dopaminergic neurons during fetal brain development. 
Acetylcholine binds the nicotinic acetylcholinergic receptor (nAchR), which nicotine can 
also bind as an agonist. The neurons that produce acetylcholine are part of the cholinergic 
system. 
 
Agonist - A molecule that mimics a neurotransmitter and binds its receptor, causing the 
same effect as the neurotransmitter itself. 
 
Animal model - A non-human animal that represents a disease through structurally and 
functionally homologous physiology. 
 
Antagonist - A molecule that blocks a neurotransmitter from binding its receptor, 
preventing the effect of the neurotransmitter. 
 
Anterior cingulate cortex (ACC) - The front of the cingulate cortex; this region is 
responsible for decision-making, reward anticipation, and impulse control, among other 
things. 
 
Attention - In this paper, attention refers to demonstrating responses relevant to a 
behavioral task. 
 
Blood oxygen level-dependent functional MRI (BOLD fMRI) - An imaging technique 
which detects changes in brain activity by measuring the amount of oxygen delivered by 
the blood to a certain brain area at a given time during a task. 
 
Cerebrum - The brain. Regions of the cerebrum are divided into several anatomical 
regions: dorsal (upper), ventral (lower), lateral (left and right edges), medial (center), 
anterior (front), and posterior (back). 
 
Conditioned stimulus - A stimulus that would not normally elicit a response which is 
paired with one that would (the unconditioned stimulus) to train a subject to respond to 
the conditioned stimulus the same as they would to the unconditioned stimulus. For 
instance, when a puff of air to the eye is preceded by a tone, subjects learn to close their 
eyes at the tone. 
 
Cortex - The outermost structure of neural tissue in the human cerebrum 
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Directional index - The difference between preferred and non-preferred direction trial 
activity ((preferred - non-preferred)/(preferred + non-preferred)) for each neuron. 
 
Dopamine - A neurotransmitter which is involved in reward, cognition, and motor 
control. Dopamine binds its receptors D2 and D3 and it taken from the synapse by its 
transporter DAT. The neurons that produce dopaminergic are part of the dopaminergic 
system. 
 
Executive functioning - The theorized cognitive system responsible for managing other 
cognitive processes, including working memory, planning and execution of tasks, and 
problem solving. 
 
Frontal lobe - An area of the cerebrum responsible for executive functioning, among 
other things. 
 
GO trial - A SST trial during which only the go-signal is presented. 
 
Hippocampus - A brain region involved in memory formation, emotion, navigation, and 
spatial orientation. 
 
Homology - When some part of the physiology of two different species are conserved 
from the same ancestral origin. Species can show structural homology, in which they 
have structures that are anatomically similar, and functional homology, in which they 
have structures which serve the same function in both species. 
 
Hyperactivity - In this paper, hyperactivity refers to increased locomotion. 
 
Impulsivity - In this paper, impulsivity refers to failing to inhibit an already-initiated 
response to a stimulus. Impulsivity is here measured by increased SSRT and decreased 
stop accuracy. 
 
Inhibition - In this paper, inhibition refers to stopping an already-initiated response to a 
stimulus. This should not be confused with inhibitory neurons, which cause downstream 
neurons to fire less often and are not necessarily involved in response inhibition. 
 
Limbic system - A collection of structures involved in emotion, long-term memory, 
behavior, and motivation. 
 
Magnetic resonance imaging (MRI) - An imaging technique which shows soft tissue 
structures of the body and can be used to measure cortical volumes. 
 
Monaminergic - Neurons that produce the monamine neurotransmitters, such as 
dopamine and noradrenaline, are called monaminergic. 
 
Neurotransmitter - A signaling molecule which binds a receptor and causes a neuron to 
fire or not fire. Neurotransmitters are produced by upstream, afferent neurons, released 
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into the synaptic space, then bind the receptor of the downstream, efferent neuron, after 
which they are taken back into the upstream neuron via transporters. 
 
Noradrenaline - A neurotransmitter which is involved in attention, among other things. 
Noradrenaline binds alpha and beta receptors. The neurons that produce noradrenaline are 
part of the adrenergic system. 
 
Nucleus accumbens (NAcc) - A brain region involved in pleasure, fear, impulsivity, 
reward, and learning. 
 
Parietal lobe - An area of the cerebrum responsible for integrating sensory information. 
 
Positron Emission Tomography (PET) - An imaging technique which senses gamma 
rays emitted by a radioactive tracer bound to a biologically active molecule to trace the 
activity of the molecule, such as dopamine. 
 
Prefrontal Cortex (PFC) - The anterior portion of the frontal lobes; this region is 
involved in complex cognitive and social behavior such as decision-making, personality 
expression, and problem solving as it directs thoughts and actions in accordance with 
internal goals. 
 
Projections - Neural pathways to and from a brain area which can be divided into 
afferents (input pathways) and efferents (output pathways). Neural activity in a brain 
region is influenced by its afferents, and a brain region in turn affects its own efferents. A 
brain region which sends projections to another region is said to innervate that area. 
 
Race model - The theory that a behavior is the result of two competing responses to 
stimuli. Here, it is used to describe competition between responding to the go-signal and 
responding to the stop-signal. 
 
Receptor - In this paper, a receptor refers to a molecule on the surface of a neuron which 
binds a neurotransmitter, affecting whether that neuron does or does not fire. 
 
Regulation - In this paper, regulation refers to when the expression of a protein, in 
particular, receptors, is changed. A receptor can be upregulated when more of the 
molecule is found on the surface of neurons or downregulated when less of the molecule 
is found. 
 
Serotonin - A neurotransmitter involved in anxiety and depression, among other things. 
It binds the 5-HT receptor. 
 
Single unit/neuron recording - A recording of action potentials of a single neuron from 
the outside of the cell. 
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Stop signal reaction time (SSRT) - The time needed by the subjects to inhibit the 
initiated response to the go-signal and change their behavior to the conditioned response 
of the stop-signal 
 
Stop index - The difference between STOP and GO trial activity (STOP - GO/STOP + 
GO) for each neuron. 
 
STOP trial - A SST trial during which a stop-signal is presented following the go-signal. 
 
Stop-signal delay - The time between the GO signal and the STOP signal. 
 
Stop-signal task (SST) - A behavioral tasks that measures impulsivity by gauging how 
quickly an already-initiated response to a stimulus is inhibited. In the task, the subject is 
trained to respond to a conditioned stimulus, known as the go-signal. After this initial 
training, the subjects practice restraining their response to the go-signal and responding to 
a second conditioned stimulus, known as the stop-signal. All of the trials begin with the 
go-signal; however, on a minority of trials (~20%), the stop-signal appears after the go-
signal. This is so that the subject becomes accustomed to quickly reacting habitually to 
the go-signal, and thus making it more difficult to inhibit the response on stop-signal 
trials. 
 
Striatum - A cerebrum structure which helps coordinate motivation with body 
movement, such as by inhibiting a rat turning left after a right directional STOP signal 
has been shown. 
 
Transporter - A molecule on the surface of an upstream neuron which brings 
neurotransmitters back from the synaptic space into the neuron to stop it from binding 
receptors on the downstream neuron. 
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