51 research outputs found

    2,2′-Diamino-5,5′-dimethyl-4,4′-bi-1,3-thia­zolium tetra­chlorido­zincate(II)

    Get PDF
    In the dianion of the title compound, (C8H12N4S2)[ZnCl4], the ZnII ion is in a slightly distorted tetra­hedral environment. In the cation, the mean planes of the thia­zole rings form a dihedral angle of 67.81 (6) Å. In the crystal structure, anions and cations are linked into a three-dimensional network via inter­molecular N—H⋯Cl hydrogen bonds

    Morphology- and size-controlled synthesis of a metal-organic framework under ultrasound irradiation : an efficient carrier for pH responsive release of anti-cancer drugs and their applicability for adsorption of amoxicillin from aqueous solution

    Get PDF
    Support of this investigation by Tarbiat Modares University is gratefully acknowledged.In this study, we have reported a biocompatible metal-organic framework (MOF) with ultra-high surface area, which we have shown to have uses as both a cancer treatment delivery system and for environmental applications. Using a sonochemical approach, highly flexible organic H3BTCTB and ditopic 4,4́′-BPDC ligands, along with modulators of acetic acid and pyridine were combined to prepare a Zn(II)-based metal-organic framework, DUT-32, [Zn4O(BPDC)(BTCTB)4/3(DEF)39.7(H2O)11.3]. Powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FTIR) were used to characterize, the particle size, shape, and structure of the DUT-32. To show the effects of shape and size of DUT-32 micro/nano-structures on doxorubicin (DOX) drug release and amoxicillin (AMX) adsorption, time of sonication, initial reagent concentrations, irradiation frequency, and acetic acid to pyridine molar ratios were optimized. The drug-loaded DUT-32 was soaked in simulated body fluid (SBF) and the drug release ratio was monitored through release time to perform in vitro drug release test. A slow and sustained release was observed for DUT-32 micro/nano-structures, having a considerable drug loading capacity. At the pH values 7.4-4.5, various profiles of pH-responsive release were achieved. Also, the prepared DUT-32 micro/nano-structures are found to be biocompatible with PC3 (prostate cancer) and HeLa (cervical cancer) cell lines, when tested by MTT assay. Moreover, DUT-32 micro/nano-structures were studied to show AMX adsorption from aqueous solution. Finally, kinetic studies indicated that AMX adsorption and drug release of DOX via this MOF are of first-order kinetics.PostprintPeer reviewe

    Synthesis and gas-sensing properties of nano- and meso-porous MoO3-doped SnO2

    Get PDF
    Nano- and meso-porous SnO2 powders doped with and without 1-10 wt% MoO3 have been synthesized by an ultrasonic spray-pyrolysis method employing a precursor aqueous solution containing tin (IV) chloride pentahydrate (SnCl4·5H2O), ammonium heptamolybdate and polymethylmethacrylate (PMMA) microspheres as a template, and the effects of MoO3-doping and the addition of PMMA microspheres on the structural, morphological and gas-sensing properties of SnO2 were investigated in this study. It is confirmed that control of the amounts of PMMA microspheres in the precursor solution was effective in realizing well-developed nano- and meso-porous structures of SnO2 by X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and the measurement of specific surface area and pore size distribution using a N2 adsorption isotherm. Gas-sensing properties of their thick films (about 50 μm thick), which were fabricated by screen-printing to various gases (NO2, C2H5OH and H2) were tested in ambient air. The doped thick films showed a high response and selectivity to 5 ppm NO2 gas in the case of 10 wt% MoO3-doping in both nano- and meso-porous structures of SnO2. We observed that the presence of Mo species in SnO2 lattice can improve the sensor response and selectivity towards NO2 gas. The effect of the MoO3-doping on the sensing characteristics of these films towards NO2 was discussed

    National, sub-national, and risk-attributed burden of thyroid cancer in Iran from 1990 to 2019

    Get PDF
    An updated exploration of the burden of thyroid cancer across a country is always required for making correct decisions. The objective of this study is to present the thyroid cancer burden and attributed burden to the high Body Mass Index (BMI) in Iran at national and sub-national levels from 1990 to 2019. The data was obtained from the GBD 2019 study estimates. To explain the pattern of changes in incidence from 1990 to 2019, decomposition analysis was conducted. Besides, the attribution of high BMI in the thyroid cancer DALYs and deaths were obtained. The age-standardized incidence rate of thyroid cancer was 1.57 (95% UI: 1.33–1.86) in 1990 and increased 131% (53–191) until 2019. The age-standardized prevalence rate of thyroid cancer was 30.19 (18.75–34.55) in 2019 which increased 164% (77–246) from 11.44 (9.38–13.85) in 1990. In 2019, the death rate, and Disability-adjusted life years of thyroid cancer was 0.49 (0.36–0.53), and 13.16 (8.93–14.62), respectively. These numbers also increased since 1990. The DALYs and deaths attributable to high BMI was 1.91 (0.95–3.11) and 0.07 (0.04–0.11), respectively. The thyroid cancer burden and high BMI attributed burden has increased from 1990 to 2019 in Iran. This study and similar studies’ results can be used for accurate resource allocation for efficient management and all potential risks’ modification for thyroid cancer with a cost-conscious view

    The unfinished agenda of communicable diseases among children and adolescents before the COVID-19 pandemic, 1990-2019: a systematic analysis of the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Communicable disease control has long been a focus of global health policy. There have been substantial reductions in the burden and mortality of communicable diseases among children younger than 5 years, but we know less about this burden in older children and adolescents, and it is unclear whether current programmes and policies remain aligned with targets for intervention. This knowledge is especially important for policy and programmes in the context of the COVID-19 pandemic. We aimed to use the Global Burden of Disease (GBD) Study 2019 to systematically characterise the burden of communicable diseases across childhood and adolescence. METHODS: In this systematic analysis of the GBD study from 1990 to 2019, all communicable diseases and their manifestations as modelled within GBD 2019 were included, categorised as 16 subgroups of common diseases or presentations. Data were reported for absolute count, prevalence, and incidence across measures of cause-specific mortality (deaths and years of life lost), disability (years lived with disability [YLDs]), and disease burden (disability-adjusted life-years [DALYs]) for children and adolescents aged 0-24 years. Data were reported across the Socio-demographic Index (SDI) and across time (1990-2019), and for 204 countries and territories. For HIV, we reported the mortality-to-incidence ratio (MIR) as a measure of health system performance. FINDINGS: In 2019, there were 3·0 million deaths and 30·0 million years of healthy life lost to disability (as measured by YLDs), corresponding to 288·4 million DALYs from communicable diseases among children and adolescents globally (57·3% of total communicable disease burden across all ages). Over time, there has been a shift in communicable disease burden from young children to older children and adolescents (largely driven by the considerable reductions in children younger than 5 years and slower progress elsewhere), although children younger than 5 years still accounted for most of the communicable disease burden in 2019. Disease burden and mortality were predominantly in low-SDI settings, with high and high-middle SDI settings also having an appreciable burden of communicable disease morbidity (4·0 million YLDs in 2019 alone). Three cause groups (enteric infections, lower-respiratory-tract infections, and malaria) accounted for 59·8% of the global communicable disease burden in children and adolescents, with tuberculosis and HIV both emerging as important causes during adolescence. HIV was the only cause for which disease burden increased over time, particularly in children and adolescents older than 5 years, and especially in females. Excess MIRs for HIV were observed for males aged 15-19 years in low-SDI settings. INTERPRETATION: Our analysis supports continued policy focus on enteric infections and lower-respiratory-tract infections, with orientation to children younger than 5 years in settings of low socioeconomic development. However, efforts should also be targeted to other conditions, particularly HIV, given its increased burden in older children and adolescents. Older children and adolescents also experience a large burden of communicable disease, further highlighting the need for efforts to extend beyond the first 5 years of life. Our analysis also identified substantial morbidity caused by communicable diseases affecting child and adolescent health across the world. FUNDING: The Australian National Health and Medical Research Council Centre for Research Excellence for Driving Investment in Global Adolescent Health and the Bill & Melinda Gates Foundation

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
    corecore