154 research outputs found

    Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics

    Get PDF
    The blood–brain barrier (BBB) acts as a barrier to prevent the central nervous system (CNS) from damage by substances that originate from the blood circulation. The BBB limits drug penetration into the brain and is one of the major clinical obstacles to the treatment of CNS diseases. Nanotechnology-based delivery systems have been tested for overcoming this barrier and releasing related drugs into the brain matrix. In this review, nanoparticles (NPs) from simple to developed delivery systems are discussed for the delivery of a drug to the brain. This review particularly focuses on polymeric nanomaterials that have been used for CNS treatment. Polymeric NPs such as polylactide (PLA), poly (D, L-lactide-co-glycolide) (PLGA), poly (ε-caprolactone) (PCL), poly (alkyl cyanoacrylate) (PACA), human serum albumin (HSA), gelatin, and chitosan are discussed in detail

    Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review

    Get PDF
    AbstractThe inert nature of most commercial polymers and nanomaterials results in limitations of applications in various industrial fields. This can be solved by surface modifications to improve physicochemical and biological properties, such as adhesion, printability, wetting and biocompatibility. Polymer functionalization allows to graft specific moieties and conjugate molecules that improve material performances. In the last decades, several approaches have been designed in the industry and academia to graft functional groups on surfaces. Here, we review surface decoration of polymers and nanomaterials, with focus on major industrial applications in the medical field, textile industry, water treatment and food packaging. We discuss the advantages and challenges of polymer functionalization. More knowledge is needed on the biology behind cell–polymer interactions, nanosafety and manufacturing at the industrial scale

    Psychometric properties of Persian version of wound-QOL questionnaire among older adults suffering from chronic wounds

    Get PDF
    BackgroundPatients with chronic wounds experience various biopsychosocial problems which severely affects their quality of life (QoL). Thus, a Persian instrument to assess the QoL of these patients is required. This study aimed to determine the psychometric properties of the Persian version of the wound-QOL questionnaire.MethodsThis methodological study was performed on Iranian patients during 2021–2022. The translation was carried out via forward-backward method. Face validity was addressed with 10 patients and content validity with 12 wound specialists. Construct validity was also assessed by performing exploratory factor analysis (EFA) (n = 100) and convergent validation with EQ-5D-3L plus Pain VAS Score and known-groups validity. The reliability was assessed by internal consistency using Cronbach’s alpha coefficient and test–retest.ResultsA total of 100 patients with chronic wounds were included in the study. Two factors with cumulative variance of 65.39% were extracted during EFA. The results revealed a significant and high correlation between the total scores of wound-QOL questionnaire, the Persian version of EQ-5D-3L (p = 0.000, r = 0.502), and Pain score (0–10; p = 0.000, r = 0.627). The Cronbach’s alpha was 0.743 and stability of the questionnaire (α = 0.872) was confirmed. In confirming the known-groups validity, the results showed that this tool can differentiate the QOL of patients with different wounds.ConclusionThe Persian version of the wound-QOL questionnaire is a valid and reliable questionnaire which can measure the QoL of patients with chronic wounds. This instrument can be used in clinical evaluation as well as research purposes across the Iranian population

    Chitosan-based advanced materials for docetaxel and paclitaxel delivery: Recent advances and future directions in cancer theranostics

    Get PDF
    Paclitaxel (PTX) and docetaxel (DTX) are key members of taxanes with high anti-tumor activity against various cancer cells. These chemotherapeutic agents suffer from a number of drawbacks and it seems that low solubility in water is the most important one. Although much effort has been made in improving the bioavailability of PTX and DTX, the low bioavailability and minimal accumulation at tumor sites are still the challenges faced in PTX and DTX therapy. As a consequence, bio-based nanoparticles (NPs) have attracted much attention due to unique properties. Among them, chitosan (CS) is of interest due to its great biocompatibility. CS is a positively charged polysaccharide with the capability of interaction with negatively charged biomolecules. Besides, it can be processed into the sheet, micro/nano-particles, scaffold, and is dissolvable in mildly acidic pH similar to the pH of the tumor microenvironment. Keeping in mind the different applications of CS in the preparation of nanocarriers for delivery of PTX and DTX, in the present review, we demonstrate that how CS functionalized-nanocarriers and CS modification can be beneficial in enhancing the bioavailability of PTX and DTX, targeted delivery at tumor site, image-guided delivery and co-delivery with other anti-tumor drugs or genes

    Autophagy modulators : mechanistic aspects and drug delivery systems

    Get PDF
    Funding: this work was supported by a grant from NMRC-CIRG to CTY. APK was supported by grants from National Medical Research Council of Singapore, NCIS Yong Siew Yoon Research Grant through donations from the Yong Loo Lin Trust and by the National Research Foundation Singapore and the Singapore Ministry of Education under its Research Centers of Excellence initiative to Cancer Science Institute of Singapore, National University of Singapore. R.M. acknowledges financial supports of Kerman University of Medical Sciences.Autophagy modulation is considered to be a promising programmed cell death mechanism to prevent and cure a great number of disorders and diseases. The crucial step in designing an effective therapeutic approach is to understand the correct and accurate causes of diseases and to understand whether autophagy plays a cytoprotective or cytotoxic/cytostatic role in the progression and prevention of disease. This knowledge will help scientists find approaches to manipulate tumor and pathologic cells in order to enhance cellular sensitivity to therapeutics and treat them. Although some conventional therapeutics suffer from poor solubility, bioavailability and controlled release mechanisms, it appears that novel nanoplatforms overcome these obstacles and have led to the design of a theranostic-controlled drug release system with high solubility and active targeting and stimuli-responsive potentials. In this review, we discuss autophagy modulators-related signaling pathways and some of the drug delivery strategies that have been applied to the field of therapeutic application of autophagy modulators. Moreover, we describe how therapeutics will target various steps of the autophagic machinery. Furthermore, nano drug delivery platforms for autophagy targeting and co-delivery of autophagy modulators with chemotherapeutics/siRNA, are also discusse

    Chitosan-based nanoscale systems for doxorubicin delivery:Exploring biomedical application in cancer therapy

    Get PDF
    Abstract Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS‐based nanoparticles (CS‐NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS‐NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P‐glycoprotein (P‐gp) to reverse drug resistance. These nanoarchitectures can provide co‐delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co‐loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid‐, carbon‐, polymeric‐ and metal‐based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS‐NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS‐NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH‐sensitive release of DOX can occur. Furthermore, redox‐ and light‐responsive CS‐NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS‐NPs, we expect to soon see significant progress towards clinical translation

    The ER Stress/UPR Axis in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis.

    Get PDF
    Cellular protein homeostasis in the lungs is constantly disrupted by recurrent exposure to various external and internal stressors, which may cause considerable protein secretion pressure on the endoplasmic reticulum (ER), resulting in the survival and differentiation of these cell types to meet the increased functional demands. Cells are able to induce a highly conserved adaptive mechanism, known as the unfolded protein response (UPR), to manage such stresses. UPR dysregulation and ER stress are involved in numerous human illnesses, such as metabolic syndrome, fibrotic diseases, and neurodegeneration, and cancer. Therefore, effective and specific compounds targeting the UPR pathway are being considered as potential therapies. This review focuses on the impact of both external and internal stressors on the ER in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) and discusses the role of the UPR signaling pathway activation in the control of cellular damage and specifically highlights the potential involvement of non-coding RNAs in COPD. Summaries of pathogenic mechanisms associated with the ER stress/UPR axis contributing to IPF and COPD, and promising pharmacological intervention strategies, are also presented

    Exergy analysis of energy-intensive production processes: advancing towards a sustainable chemical industry

    Get PDF
    Exergy analysis is becoming a very powerful strategy to evaluate the real efficiency of a process. Its application in the chemical industry is still at an early stage but many interesting remarks can be obtained from the recent research in the most energy intensive processes of the chemical industry: the production of chemicals, the cement industry, the paper industry and, the iron and steel industry. The present review analyzes the opportunities and challenges in those sectors by considering exergy analyses as the first required step (although not sufficient) to advance towards a more sustainable chemical industry. Social, environmental and economic factors play a role in the critical evaluation of a process and exergy could be considered as the property that joins together those three cores of sustainability

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore