12 research outputs found

    Metal complex formation and anticancer activity of cu(I) and cu(ii) complexes with metformin

    Get PDF
    Metformin has been used for decades in millions of type 2 diabetes mellitus patients. In this time, correlations between metformin use and the occurrence of other disorders have been noted, as well as unpredictable metformin side effects. Diabetes is a significant cancer risk factor, but unexpectedly, metformin-treated diabetic patients have lower cancer incidence. Here, we show that metformin forms stable complexes with copper (II) ions. Both copper(I)/metformin and copper(II)/metformin complexes form adducts with glutathione, the main intracellular antioxidative peptide, found at high levels in cancer cells. Metformin reduces cell number and viability in SW1222 and K562 cells, as well as in K562-200 multidrug-resistant cells. Notably, the antiproliferative effect of metformin is enhanced in the presence of copper ions

    What doesn't kill you makes you stronger: Future applications of amyloid aggregates in biomedicine

    Get PDF
    Amyloid proteins are linked to the pathogenesis of several diseases including Alzheimer’s disease, but at the same time a range of functional amyloids are physiologically important in humans. Although the disease pathogenies have been associated with protein aggregation, the mechanisms and factors that lead to protein aggregation are not completely understood. Paradoxically, unique characteristics of amyloids provide new opportunities for engineering innovative materials with biomedical applications. In this review, we discuss not only outstanding advances in biomedical applications of amyloid peptides, but also the mechanism of amyloid aggregation, factors aecting the process, and core sequences driving the aggregation. We aim with this review to provide a useful manual for those who engineer amyloids for innovative medicine solutions

    New Advances in Fast Methods of 2D NMR Experiments

    Get PDF
    Although nuclear magnetic resonance spectroscopy is a potent analytical tool for identification, quantification, and structural elucidation, it suffers from inherently low sensitivity limitations. This chapter focuses on recently reported methods that enable quick acquisition of NMR spectra, as well as new methods of faster, efficient, and informative two-dimensional (2D) NMR methods. Fast and efficient data acquisition has risen in response to an increasing need to investigate chemical and biological processes in real time. Several new techniques have been successfully introduced. One example of this is band-selective optimized-flip-angle short-transient (SOFAST) NMR, which has opened the door to studying the kinetics of biological processes such as the phosphorylation of proteins. The fast recording of NMR spectra allows researchers to investigate time sensitive molecules that have limited stability under experimental conditions. The increasing awareness that molecular structures are dynamic, rather than static, has pushed some researchers to find alternatives to standard, time-consuming methods of 15N relaxation observables acquisition

    Undercover Toxic Ménage à Trois of Amylin, Copper (II) and Metformin in Human Embryonic Kidney Cells

    Get PDF
    In recent decades, type 2 diabetes complications have been correlated with amylin aggregation, copper homeostasis and metformin side effects. However, each factor was analyzed separately, and only in some rare cases copper/amylin or copper/metformin complexes were considered. We demonstrate for the first time that binary metformin/amylin and tertiary copper (II)/amylin/metformin complexes of high cellular toxicity are formed and lead to the formation of aggregated multi-level lamellar structures on the cell membrane. Considering the increased concentration of amylin, copper (II) and metformin in kidneys of T2DM patients, our findings on the toxicity of amylin and its adducts may be correlated with diabetic nephropathy development

    Living with the enemy: from protein-misfolding pathologies we know, to those we want to know

    Get PDF
    Conformational diseases are caused by the aggregation of misfolded proteins. The risk for such pathologies develops years before clinical symptoms appear, and is higher in people with alpha-1 antitrypsin (AAT) polymorphisms. Thousands of people with alpha-1 antitrypsin deficiency (AATD) are underdiagnosed. Enemyaggregating proteins may reside in these underdiagnosed AATD patients for many years before a pathology for AATD fully develops. In this perspective review, we hypothesize that the AAT protein could exert a new and previously unconsidered biological effect as an endogenous metal ion chelator that plays a significant role in essential metal ion homeostasis. In this respect, AAT polymorphism may cause an imbalance of metal ions, which could be correlated with the aggregation of amylin, tau, amyloid beta, and alpha synuclein proteins in type 2 diabetes mellitus (T2DM), Alzheimer’s and Parkinson’s diseases, respectively

    Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Diseases

    Get PDF
    Neurodegenerative diseases are a serious and widespread global public health burden amongst aging populations. The total estimated worldwide global cost of dementia was US818billionin2015andhasbeenprojectedtoriseto2trillionUS818 billion in 2015 and has been projected to rise to 2 trillion US by 2030. While advances have been made to understand different neurodegenerative disease mechanisms, effective therapeutic strategies do not generally exist. Several drugs have been proposed in the last two decades for the treatment of different types of neurodegenerative diseases, with little therapeutic benefit, and often with severe adverse and side effects. Thus, the search for novel drugs with higher efficacy and fewer drawbacks is an ongoing challenge in the treatment of neurodegenerative disease. Several natural compounds including polysaccharides have demonstrated neuroprotective and even therapeutic effects. Natural polysaccharides are widely distributed in plants, animals, algae, bacterial and fungal species, and have received considerable attention for their wide-ranging bioactivity, including their antioxidant, anti-neuroinflammatory, anticholinesterase and anti-amyloidogenic effects. In this review, we summarize different mechanisms involved in neurodegenerative diseases and the neuroprotective effects of natural polysaccharides, highlighting their potential role in the prevention and therapy of neurodegenerative disease

    Therapeutic Properties of Vanadium Complexes

    Get PDF
    Vanadium is a hard, silver-grey transition metal found in at least 60 minerals and fossil fuel deposits. Its oxide and other vanadium salts are toxic to humans, but the toxic effects depend on the vanadium form, dose, exposure duration, and route of intoxication. Vanadium is used by some life forms as an active center in enzymes, such as the vanadium bromoperoxidase of ocean algae and nitrogenases of bacteria. The structure and biochemistry of vanadate resemble those of phosphate, hence vanadate can be regarded as a phosphate competitor in a variety of biochemical enzymes such as kinases and phosphatases. In this review, we describe the biochemical pathways regulated by vanadium compounds and their potential therapeutic benefits for a range of disorders including type 2 diabetes, cancer, cardiovascular disease, and microbial pathology

    Therapeutic Properties of Vanadium Complexes

    No full text
    Vanadium is a hard, silver-grey transition metal found in at least 60 minerals and fossil fuel deposits. Its oxide and other vanadium salts are toxic to humans, but the toxic effects depend on the vanadium form, dose, exposure duration, and route of intoxication. Vanadium is used by some life forms as an active center in enzymes, such as the vanadium bromoperoxidase of ocean algae and nitrogenases of bacteria. The structure and biochemistry of vanadate resemble those of phosphate, hence vanadate can be regarded as a phosphate competitor in a variety of biochemical enzymes such as kinases and phosphatases. In this review, we describe the biochemical pathways regulated by vanadium compounds and their potential therapeutic benefits for a range of disorders including type 2 diabetes, cancer, cardiovascular disease, and microbial pathology
    corecore