5 research outputs found

    Lower Rydberg series of methane : A combined coupled cluster linear response and molecular quantum defect orbital calculation

    Get PDF
    Vertical excitation energies as well as related absolute photoabsorption oscillator strength data are very scarce in the literature for methane. In this study, we have characterized the three existing series of low-lying Rydberg states of CH4 by computing coupled cluster linear response (CCLR) vertical excitation energies together with oscillator strengths in the molecular-adapted quantum defect orbital formalism from a distorted Cs geometry selected on the basis of outer valence green function calculations. The present work provides a wide range of data of excitation energies and absolute oscillator strengths which correspond to the Rydberg series converging to the three lower ionization potential values of the distorted methane molecule, in energy regions for which experimentally measured data appear to be [email protected] [email protected] [email protected]

    Large‐scale calculations of excitation energies in coupled cluster theory : The singlet excited states of benzene

    Get PDF
    Algorithms for calculating singlet excitation energies in the coupled cluster singles and doubles (CCSD) model are discussed and an implementation of an atomic‐integral direct algorithm is presented. Each excitation energy is calculated at a cost comparable to that of the CCSD ground‐state energy. Singlet excitation energies are calculated for benzene using up to 432 basis functions. Basis‐set effects of the order of 0.2 eV are observed when the basis is increased from augmented polarized valence double‐zeta (aug‐cc‐pVDZ) to augmented polarized valence triple‐zeta (aug‐cc‐pVTZ) quality. The correlation problem is examined by performing calculations in the hierarchy of coupled cluster models CCS, CC2, CCSD, and CC3, as well as by using the CCSDR(3) perturbative triples corrections. The effect of triple excitations are less than 0.2 eV for all excitations except for the 2 1E2g state. The calculated excitation energies are compared with experiment and other theoretical [email protected]

    Development of accurate potentials for the physisorption of water on graphene

    No full text
    From coupled-cluster singles and doubles model including connected triples corrections [CCSD(T)] calculations on the water dimer and B97D/CC on the water-circumcoronene complex at a large number of randomly generated conformations, interaction potentials for the physisorption of water on graphene are built, accomplishing almost sub-chemical accuracy. The force fields were constructed by decomposing the interaction into electrostatic and van der Waals contributions, the latter represented through improved Lennard-Jones potentials. Besides, a Chemistry at Harvard Macromolecular Mechanics (CHARMM)-like term was included in the water–water potential to improve the description of hydrogen bonds, and an induction term was added to model the polarization effects in the interaction between water and polyaromatic hydrocarbons (PAHs) or graphene. Two schemes with three and six point charges were considered for the interactions water–water and water-PAH, as Coulomb contributions are zero in the water-graphene system. The proposed fitted potentials reproduce the ab initio data used to build them in the whole range of distances and conformations and provide results for selected points very close to CCSD(T) benchmarks. When applied to the water-graphene system, the obtained results are in excellent agreement with p-CCSD(T), revised symmetry-adapted perturbation theory based on density functional theory monomer properties (DFT-SAPT), and diffusion Monte Carlo reference values. Furthermore, the stability of the various conformers water-PAH and water-graphene, as well as the different trends observed between these systems are rationalized in terms of the modifications of the electrostatic contribution

    A computational study of some electric and magnetic properties of gaseous BF3 and BCl3

    Get PDF
    We present the results of an extended computational study of the electric and magnetic properties connected to Cotton-Mouton birefringences, on the trifluoro- and trichloroborides in the gas phase. The electric dipole polarizabilities, magnetizabilities, quadrupole moments, and higher-order hypersusceptibilities—expressed as quadratic and cubic frequency-dependent response functions— are computed within Hartree-Fock, density-functional, and coupled-cluster response theories employing singly and doubly augmented correlation-consistent basis sets and London orbitals in the magnetic property calculations. The results, which illustrate the capability of time-dependent density-functional theory for electron-rich systems, are compared with available experimental data. Revised values of both experimentally derived quadrupole moment of BF3, 2.72±0.15 a.u., and magnetizability anisotropy of BCl3, −0.45±0.09 a.u., both obtained in birefringence experiments that neglect the effects of higher-order hypersusceptibilities, are presented. In the theoretical limit the traceless quadrupole moments of BF3 and BCl3 are determined to be 3.00±0.01 and 0.71±0.01 a.u., respectively
    corecore