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Algorithms for calculating singlet excitation energies in the coupled cluster singles and doubles
~CCSD! model are discussed and an implementation of an atomic-integral direct algorithm is
presented. Each excitation energy is calculated at a cost comparable to that of the CCSD
ground-state energy. Singlet excitation energies are calculated for benzene using up to 432 basis
functions. Basis-set effects of the order of 0.2 eV are observed when the basis is increased from
augmented polarized valence double-zeta~aug-cc-pVDZ! to augmented polarized valence
triple-zeta~aug-cc-pVTZ! quality. The correlation problem is examined by performing calculations
in the hierarchy of coupled cluster models CCS, CC2, CCSD, and CC3, as well as by using the
CCSDR~3! perturbative triples corrections. The effect of triple excitations are less than 0.2 eV for
all excitations except for the 21E2g state. The calculated excitation energies are compared with
experiment and other theoretical results. ©1996 American Institute of Physics.
@S0021-9606~96!01038-0#

I. INTRODUCTION

The accurate calculation of electronic excitation energies
remains a difficult challenge to theoretical chemistry since a
balanced description of two electronic states is required. The
methods used for the calculation of excitation energies may
be divided in two classes: 1! methods that require the explicit
calculation of individual states followed by the evaluation of
the excitation energy as an energy difference, and~2! the
response-function methods where the excitation energy is
obtained directly from an eigenvalue equation. The first class
of methods are exemplified by multireference configuration
interaction~MRCI! ~Ref. 1! and multireference perturbation
theory ~MRMP!.2–4 The response-function methods are ex-
emplified by self-consistent field~SCF! response theory,5 the
second-order polarization-propagator approximation
~SOPPA!,6–7 and coupled cluster~CC! response theory.8–15

In response-function theory, the excitation energies are
identified as the poles of the linear response function and the
transition moments are obtained from their residues. In this
approach, the excitation energies are obtained as the eigen-
values of the linear-response eigenvalue equations.5 Excita-
tion energies and oscillator strengths are determined from the
same response function and are thus obtained at the same
level of approximation. Response functions can also be de-
rived within coupled cluster theory. Although the ground
state is obtained by solving a non-linear set of equations,
response theory leads to a set of eigenvalue equations for the
excited states, in contrast to for example the non-linear opti-
mization of the individual states performed in calculations
employing second-order perturbation theory building on a
complete active space reference~CASPT2!.3,4

A great advantage of the single-reference coupled cluster
response method is that it provides us with a black-box ap-
proach to the calculation excitation energies. The calculation
is completely specified when the orbital basis and the
coupled cluster model—for example, the coupled cluster
singles and doubles~CCSD! model—have been specified.
Thus CCSD is defined universallya priori, making the cal-
culations easier and enhancing the reliability of transferring
error estimates between different molecules. In contrast, the
CASPT2 calculation is not specified until the active spaces
of the individual states have been selected—the active spaces
are characteristic of each electronic state for each molecule
and their construction requires a careful consideration of the
state in question.

The quality of excitation energies obtained within the
framework of coupled cluster response theory depends on
two crucial factors: the adequacy of a single-determinant ref-
erence function in the coupled cluster ground-state calcula-
tion, and the adequacy of the excitation manifold for describ-
ing the excited states. To satisfy the first requirement, the
Hartree-Fock wave function must provide a reasonable ap-
proximation for the ground state. This requirement therefore
restricts the application of coupled cluster response theory to
electronic systems that are dominated by a single determi-
nant in the electronic ground state. Passing to the second
requirement for the accurate calculation of excitation ener-
gies, we note that transitions dominated by a single elec-
tronic replacement are more accurately described than those
dominated by a double replacement.14,15

In state-specific approaches such as CASPT2, the quality
of the calculations do not depend strongly on the excitation
level but are instead dependent on the multiconfigurational
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nature of the excited state. CASPT2 and single-reference CC
response theory are therefore in some sense complementary.
Single-reference CC response theory may be carried out in a
black-box manner, providing the user with oscillator
strengths and excitations energies calculated from the same
model. CASPT2 requires more intervention on the part of the
user but can be applied to multiconfigurational ground states.
However, the separate treatment of non-dynamical and dy-
namical correlation in CASPT2 may in some cases give
problems associated with intruder states.2 In benchmark cal-
culations, the accuracy of CASPT2 ground-state electronic
energies was found to be no higher than that of second-order
Mo” ller-Plesset theory~MP2! with regard to dynamical
correlation.3,4,16 To obtain accurate excitation energies in
CASPT2, it is thus crucial to have a balanced description of
the two states and considerable care must be exercised in
choosing their reference spaces. The non-linear simultaneous
optimization of several electronic states is difficult and state-
average approaches are sometimes used. Since the excited
states are individually optimized in CASSCF, they are non-
orthogonal and interacting. Special consideration is therefore
required to obtain oscillator strengths in CASSCF for sepa-
rately optimized states.17 Second-order corrections to the
transition moments compatible with CASPT2 have so far not
been considered, although CASPT2 energy differences are
often used in the expression for the oscillator strengths2

where the transition moments are calculated from CAS
functions.17

The coupled cluster approach has since its introduction
in quantum chemistry gained increasing popularity, provid-
ing an efficient method for treating the dynamical correlation
as evident from many recent applications.18–20 Several dif-
ferent implementations of the CCSD model have been
presented21–27 and a variety of molecular properties have
been calculated—molecular gradients28–30 and molecular
Hessians,31 polarizabilities,32–34 nuclear magnetic shielding
constants,35–38 as well as other spectroscopic con-
stants.39,40,41The CCSD~T! approach42—which includes per-
turbative corrections for the effect of triple excitations—has
provided highly accurate results for a wide range of
frequency-independent molecular properties and remains the
most popular method for high-accuracy calculations. For the
calculation of time-independent properties, the sequence of
models SCF, MP2, CCSD, and CCSD~T! provides a useful
hierarchy of methods where the properties may be calculated
to higher and higher accuracy at increasing cost.

In a recent series of papers, we have advanced a new
hierarchy of coupled cluster models. The standard hierarchy
of coupled cluster models CCS, CCSD, CCSDT, and so on is
supplemented with the iterative models CC2~Ref. 15! and
CC3 ~Refs. 43, 14! introduced as approximations to CCSD
and CCSDT~and similarly for higher orders!. The advantage
of this new hierarchy is that we may to each order identify
excitation energies and transition moments from the response
functions. As such, the CC2 and CC3 models provide useful
alternatives to the perturbative MP2 and CCSD~T! models,
which do not give response functions that possess pole struc-
tures in accordance with the exact theory and thus cannot be

applied successfully to the study of dynamic properties, as is
for example evident from inspection of the expression for the
MP2 frequency-dependent polarizabilities.44,45

The new hierarchy of coupled cluster methods contains
the models CCS~N4!, CC2~N5!, CCSD~N6!, CC3~N7!,
CCSDT~N8!, and so on, where the numbers in parentheses
indicate the computational cost in terms of the scaling of the
calculations with the number of orbitalsN. Going through
the sequence of models belonging to this hierarchy, we may
calculate molecular dynamic properties with increasing accu-
racy and cost. We have examined the performance of the
above coupled cluster hierarchy in benchmark calculations of
excitation energies.46,47The inherent convergence—in terms
of increasing completeness of the cluster expansion and also
the determination of properties through increasing order in
the ground-state fluctuation potential—manifests itself
clearly through a decrease in error of about a factor of 3 at
each step.

Iterative triples methods are computationally expensive
and we have therefore proposed non-iterative corrections to
CCSD.48 In particular, we have introduced the CCSDR~3!
approach as a non-iterative approach for the calculation of
excitation energies that includes the same lower-order terms
as CC3. The CCSDR~3! approach was found to give highly
accurate excitation energies48,47 and to be superior to other
non-iterative triples corrections.48–49

A hierarchical approach is difficult to obtain in multiref-
erence methods—extensions of the active space cannot al-
ways be expected to give better excitation energies and the
convergence towards the exact result in configuration inter-
action is slow. Also, perturbation theory cannot always be
relied on to improve the description systematically. It has
been demonstrated that Mo” ller-Plesset theory for several
single-reference systems such as Ne is divergent for ex-
tended basis sets.86 For multireference systems, an even
more unpredictable behaviour is found.87

Atomic-integral direct methods were introduced by
Almlöf and coworkers50 and have significantly extended the
application range of the Hartree–Fock and MP2
methods.88,89A similar development has recently taken place
in CC theory, where atomic-integral direct CCSD techniques
have been presented based on a strategy where integrals are
generated in distributions with one fixed and three free
atomic indices.26,27 Thus, ground-state CCSD total energies
have been calculated with more than 500 basis functions.27

We present in this paper the extension of such tech-
niques to the calculation of CCSD excitation energies. We
have briefly described elsewhere the techniques for integral-
direct calculations of CC2 excitation energies.51 The linear
transformations that are essential for integral-direct CC cal-
culations of excitation energies are also required for the cal-
culation of other molecular properties. In this paper, we dis-
cuss algorithms for calculating the linear transformations
necessary to calculate CCSD excitation energies and eigen-
vectors. We describe in detail the integral-direct implemen-
tation and especially the connection to the integral-direct al-
gorithm for the ground-state energy described in Ref. 27.

We present in this paper applications to the singlet ex-
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cited states in the benzene molecule. Benzene is one of the
most investigated molecules both theoretically52–60 and
experimentally.60–73,79–82However, there are still many un-
solved problems in the benzene spectrum. The application of
integral-direct techniques significantly expands the range of
one electron basis sets that can be used in theoretical calcu-
lations. The recently presented CC2 calculations and the cal-
culations in this paper represent to our knowledge the first
integral-direct correlated calculations of excitation energies.
We here present calculations with up to 432 basis functions
in CCSD. The effect of triple excitations is investigated by
carrying out CC3 and CCSDR~3! calculations.

In Section II, we review the theory for calculating
coupled cluster excitation energies and describe an imple-
mentation using an integral-direct algorithm. In Section III,
we present results for benzene and compare our results with
other theoretical and experimental results. In Section IV we
give a summary.

II. EXCITATION ENERGIES IN THE INTEGRAL-DIRECT
CCSD MODEL

A. Coupled-cluster theory

Consider a closed-shell system described by a Hamil-
tonian H. The single-reference coupled cluster~CC! ansatz
for the wave function is

uCC&5exp~T!uHF&, ~1!

where the reference state is taken to be a Hartree-FockuHF&
state. For anN-electron system, the cluster operator in Eq.
~1! truncates at excitation levelN

T5T11T21•••1TN , ~2!

where

T15(
ai

t i
aEai , ~3!

T25 (
~ai !>~b j !

t i j
abEaiEb j , ~4!

are the one- and two-electron cluster operators and similarly
for higher-order excitation operators. Indicesi jkl andabcd
refer to the occupied and unoccupied orbitals in the Hartree-
Fock reference stateuHF&. In a shorthand notation, we write
the cluster operator in the form

T5(
m

tmtm , ~5!

where thetm are the cluster amplitudes andtm the corre-
sponding excitation operators. Introducing the CC ansatz
into the Schro¨dinger equation and multiplying with exp~2T!
from the left, we arrive at the CC Schro¨dinger equation

exp~2T!H exp~T!uHF&5EuHF&. ~6!

The cluster amplitudes are determined by projecting the CC
Schrödinger equation onto the manifold of excitations out of
the reference state

^mu5^HFutm
1 , ~7!

which gives the CC amplitude equations

Vm5^muexp~2T!HuCC&50. ~8!

Projection of the CC Schro¨dinger equation onto the reference
state gives the CC energy as

E5^HFuHuCC&. ~9!

Several derivations of coupled cluster response functions
have been presented.8–15 The excitation energies are identi-
fied as poles of the linear response function, which deter-
mines the excitation energies as the eigenvalues of the non-
symmetric coupled-cluster Jacobian

ARk5vkRk , ~10!

We here assume a unit metric

Smn5^muexp~2T!tnuCC&5dmn . ~11!

The coupled cluster Jacobian is defined as

Amn5
]Vm

]tn
. ~12!

For a non-approximated CC theory, we obtain from Eq.~8!

Amn5^muexp~2T!@H,tn#uCC&. ~13!

In the Lagrangian pseudo-energy derivative formulation of
CC response theory in Ref. 14, the excitation energies in any
iterative coupled cluster model are determined as eigenval-
ues of the Jacobian defined in Eq.~12!. This holds not only
when the cluster expansion is truncated as in CCSD, but also
when additional approximations are introduced as for ex-
ample in CC2 and CC3.

B. The coupled cluster singles and doubles model

In the coupled cluster singles and doubles model
~CCSD!, the cluster expansion is truncated at the doubles
excitation level

T5T11T2 . ~14!

The CCSD amplitudes$t i
a% and $t i j

ab% are determined from
Eq. ~8!, where$,mu% are singly and doubly excited determi-
nants with respect to the Hartree-Fock reference determinant

$^m1u%5$^HFuEia
1
2 %, ~15!

$^m2u%5$^HFu~2EiaEjb1EjaEib!

3 1
6 ~11dabd i j !

21uai>b j%. ~16!

Together with the excited statesEaiuHF& andEaiEb juHF&
obtained using the excitation operators in Eqs.~3! and ~4!,
these states constitute a biorthonormal basis.

Following Ref. 26, the CCSD amplitude equations can
be expressed as
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Vm5^muexp~2T12T2!H exp~T11T2!uHF&

5^muexp~2T2!Ĥ exp~T2!uHF&50, ~17!

where we have introduced theT1-similarity transformed
Hamiltonian

Ĥ5exp~2T1!H exp~T1!. ~18!

The electronic Hamiltonian in the second-quantization for-
malism is given by

H5(
pq

hpqEpq1
1

2 (
pqrs

~pqurs!epqrs . ~19!

The molecular orbitals$fp% are expanded in the atomic or-
bitals $xm%

fp5(
m

Cmpxm , ~20!

whereCmp are the molecular-orbital coefficients. SinceT1 is
a one-particle operator, the transformation in Eq.~18! con-
serves the particle rank of the electronic Hamiltonian. TheT1
transformation of the Hamiltonian can be expressed in terms
of a transformation of the creation and annihilation opera-
tors. Absorbing this transformation in the definition of the
integrals, we may write the modified Hamiltonian in Eq.~18!
as

Ĥ5ĥ1ĝ5(
pq

ĥpqEpq1
1

2 (
pqrs

~pqû rs!epqrs . ~21!

The integrals of the modified Hamiltonian are

ĥpq5(
mn

Lmp
p Lnq

h hmn , ~22!

~pqû rs!5(
mn
rs

Lmp
p Lrr

p Lnq
h Lss

h ~mnurs!, ~23!

whereLp andLh are effective MO transformation matrices
~particle and hole transformations! given in terms of molecu-
lar orbital coefficients and the singles amplitudes

Lp5C@12t1
T#, ~24!

Lh5C@11t1#. ~25!

We have here introduced the matrix notation

t15H 0 0

$tai% 0J , ~26!

where the orbitals are ordered with the occupied orbitals pre-
ceding the unoccupied ones. The usual eightfold permuta-
tional symmetry of the two-electron integrals in the elec-
tronic Hamiltonian is destroyed and only the particle
permutation symmetry is conserved

~pqû rs!5~rs ûpq!. ~27!

Using theT1-transformed Hamiltonian, the CCSD amplitude
equations can be written in a coupled cluster doubles~CCD!
form:

^m1uĤ1@Ĥ,T2#uHF&50, ~28!

^m2uĤ1@Ĥ,T2#1
1

2
@@Ĥ,T2#,T2#uHF&50. ~29!

The CCSD Jacobian is given by

Amn5^muexp~2T12T2!@H,tn#exp~T11T2!uHF&.
~30!

The manipulations applied to the CCSD amplitude equations
above are easily introduced in the CCSD Jacobian:

Amn5^muexp~2T2!@Ĥ,tn#exp~T2!uHF&

5^mu@Ĥ,tn#uHF&1^mu@@Ĥ,tn#,T2#uHF&. ~31!

We may now write the CCSD Jacobian in matrix form as

Amn5H ^m1u@Ĥ1@Ĥ,T2#,tn1
#uHF& ^m1u@Ĥ,tn2

#uHF&

^m2u@Ĥ1@Ĥ,T2#,tn1
#uHF& ^m2u@Ĥ1@H,T2#,tn2

#uHF&J . ~32!

C. Transformation of trial vectors with the CCSD
Jacobian

In solving large eigenvalue equations, iterative tech-
niques are mandatory. The key computational step in itera-
tive techniques is the linear transformation of a trial vector
with a matrix. To extend the integral-direct coupled cluster
technique to the calculation of CC excitation energies and
second-order molecular properties, it is therefore necessary
to perform linear transformations with the CC Jacobian in an
AO-integral driven approach.

LetR denote a right trial vector with singles and doubles

excitation componentsR1 andR2, respectively. The trans-
formed vector may be written

r5AR ~33!

or in terms of the singles and doubles excitation components

S r1
r2

D5S 1r112r1
1r21

2r2
D5SA11R11A12R2

A21R11A22R2
D . ~34!

Introducing the CCSD Jacobian in the form of Eq.~32!, we
obtain
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1rai5 K ai U@Ĥ,R1#uHF&1 K ai U@@Ĥ,R1#,T2#uHF&, ~35!

1raib j5 K abi j U@Ĥ,R1#uHF&1 K abi j U@@Ĥ,R1#,T2#uHF&,

~36!

2rai5 K ai U@Ĥ,R2#uHF&, ~37!

2raib j5 K abi j U@Ĥ,R2#uHF&1 K abi j U@@H,R2#,T2#uHF&,

~38!

where ^ i
au and ^ i j

abu refer to the biorthonormal basis in Eqs.
~15! and ~16!. R1 andR2 are singles and doubles excitation
operators with the trial-vector coefficients (Rk

c ,Rkl
cd) as am-

plitudes.~We use the same letters for the operators and vec-
tors but use bold-face type for the vectors.! Thus, theR1 and
R2 operators are written in a form similar to theT1 andT2
operators

R15(
ck

Rk
cEck , ~39!

R25 (
~ck!>~dl !

Rkl
cdEckEdl . ~40!

We introduce yet another effective Hamiltonian

H̃5@Ĥ,R1#, ~41!

in terms of which we may rewrite Eqs.~35! and ~36! as

1rai5 K ai UH̃uHF&1 K ai U@H̃,T2#uHF&, ~42!

1raib j5 K abi j UH̃uHF&1 K abi j U@H̃,T2#uHF&. ~43!

The effective Hamiltonian in Eq.~41! represents a one-index
transformation of theT1-transformed Hamiltonian. Consider
the one-electron part:

h̃5@ ĥ,R1#

5F(
mn

ĥmnEmn ,(
ai

Ri
aEaiG

5(
mn

(
ai

ĥmnRi
a~Emidna2Eandmi!

5(
mi

S (
a

ĥmaRi
aDEmi1(

an
S 2(

i
ĥinRi

aDEan

5(
mi

ĥm ī Emi1(
an

ĥ ānEan . ~44!

An overbar indicates an additional transformation of that in-
dex with theR1 amplitudes in accordance with the equation
above. We may now write theR1-effective Hamiltonian as

H̃5(
pq

h̃pqEpq1
1

2 (
pqrs

~pq ũ rs!epqrs , ~45!

where the tilde integrals are defined as

h̃pq5ĥ p̄q1ĥp q̄ , ~46!

~pq ũ rs!5~ p̄q ũ rs!1~pq̄ ũ rs!1~pq ũ r̄ s!1~pq ũ rs̄!.
~47!

Again, we may absorb these one-index transformations into
the MO coefficients. Consider for example the case where
the particle index of the one-electron operator is transformed

ĥ p̄q52(
k
Rk
pĥkq5(

mn
S 2(

k
Rk
pLmk

p DLnq
h hmn

5(
mn

L̄mp
p Lnq

h hmn . ~48!

We have here introducedL̄p and L̄h as new effective MO
transformation matrices that incorporate the newR1 transfor-
mation:

L̄mp
p 52(

k
Rk
pLmk

p , ~49!

L̄mq
h 5(

a
Rq
aLma

h . ~50!

Note that the structures ofL̄p andL̄h imply that a ‘‘barred’’
particle index must be virtual and that a ‘‘barred’’ hole index
must be occupied, for example

ĥ ī m50 and ĥm ā50. ~51!

We may now compare the coupled cluster amplitude
equations in form of the CCSD vector function in Eqs.~28!
and ~29! with the expressions for the linearly transformed
vector in Eqs.~37!, ~38!, ~42!, ~43!. The individual terms in
the transformed vector are all present in the CCSD vector
function. The terms in the CCSD amplitude equations that
are linear inT2 become linear inR2. In place of terms qua-
dratic inT2 such as 1/2[[H,T2],T2] we obtain terms bilinear
in R2 andT2, [[H,T2],R2]. In the R1 terms Eqs.~42! and
~43! we have absorbedR1 into the Hamiltonian. As a conse-
quence, we now have terms similar to the terms in Eqs.~28!
and~29! whereĤ is replaced withH̃. Note, however, that the
terms quadratic inT2 vanish sinceR1T2

2 is a quintuple exci-
tation. The CCSD amplitude equations in the biorthonormal
basis can be written as follows

Vai5Vai
G1Vai

H1Vai
I 1Vai

J , ~52!

Vaib j5~Vaib j
A 1Vaib j

B 1Pi j
ab$Vaib j

C 1Vaib j
D 1Vaib j

E %

1Vaib j
F !~11d i jdab!

21, ~53!

where

Pi j
abS abi j D5S abi j D1S baji D . ~54!

In a similar way, we may write the linearly transformed vec-
tor as

1rai5
1rai

G11rai
H11rai

I 11rai
J , ~55!
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2rai5
2rai

G12rai
H12rai

I , ~56!

1raib j5~1raib j
A 11raib j

B 1Pi j
ab$1raib j

C 11raib j
D 11raib j

E %

11raib j
F !~11dabd i j !

21, ~57!

2raib j5~2raib j
A 12raib j

B 1Pi j
ab$2raib j

C 12raib j
D 12raib j

E %!

3~11dabd i j !
21. ~58!

The explicit forms of the various contributions are given in
Table I in terms ofR2 andT2 amplitudes and integrals of the
T1 and R1 dependent effective Hamiltonians. Note that in
deriving and implementing these equations, it is convenient
to expand theR2 and T2 amplitudes to a squared (aib j)
rather than packed (ai>b j) form

R25 (
ai>b j

Ri j
abEaiEb j5

1

2 (
aib j

~11dabd i j !Ri j
abEaiEb j

~59!

and similarly for T2. The diagonal factors have been ab-
sorbed into the amplitudes in the equations in Table I by
means of the substitutions

~11dabd i j !Ri j
ab→Ri j

ab , ~60!

~11dabd i j !t i j
ab→t i j

ab . ~61!

We obtain two sets of equations of a structure closely related
to that of the CCSD amplitude equations. We would there-
fore expect the computational cost of one linear transforma-
tion in an MO-driven algorithm to be about twice that of one
iteration in the CCSD amplitude equations. We shall now
consider the implementation in more detail with the aim to
reduce the computational cost further and also to develop a
procedure compatible with the recently developed integral-
driven CC code.

D. Atomic-orbital integral-driven linear transformation

Let us briefly review the integral-direct CCSD energy
algorithm. The AO integrals are calculated in distributions
with three free AO indices and one fixed AO indexd:

I ab,g
d 5~abugd!, a>b. ~62!

All distributions belonging to the same shell are calculated
simultaneously and then written to disk. The distributions are
subsequently read back in one at a time in a loop over thed
index belonging to the shell in question. Inside thed loop,
one integral distribution is kept in core together with a
packed result vector and theT2 amplitudes in the squared
form and also some minor intermediates. The total memory
requirement in the integral-direct calculation of the CCSD
amplitude equations is of the order 1/2N313/2V2O2. The

TABLE I. The CCSD linear transformation and the CCSD amplitude equations.

1rai
G5(

cdk
tik
cdL̃kdac

2rai
G5(

cdk
Rik
cdL̂kdac Vai

G5(
cdk

tik
cdL̂kdac

1rai
H52(

dkl
tkl
adL̃ldki

2rai
H52(

dkl
Rkl
adL̂ldki Vai

H52(
dkl

tkl
adL̂ldki

1rai
I 5(

ck
~2tik

ac2tik
ca!F̃kc

2rai
I 5(

ck
~2Rik

ac2Rik
ca!F̂kc Vai

I 5(
ck

~2tik
ac2tik

ca!F̂kc

1rai
J 5F̃ai Vai

J 5F̂ai

1raibj
A 5(

kl
tkl
ab~ki ũ lj ! 2raibj

A 5(
kl

Rkl
abS~ki ûlj !1(

cd
tij
cd~kculd!D

1(
kl

tkl
abS(

cd
Rij
cd~kculd!D

Vaibj
A 5(

kl
tkl
abS~ki ûlj !1(

cd
tij
cd~kculd!D

1raibj
B 5(

cd
tij
cd~ac ũ bd! 2raibj

B 5(
cd

Rij
cd~acûbd! Vaibj

B 5(
cd

tij
cd~acûbd!

1raibj
C 52S121Pij D(

ck
tjk
cb~ki ũ ac! 2raibj

C 52S121Pij D(
ck

Rjk
cbS~ki ûac!2(

dl
tli
ad~lcukd!D Vaibj

C 52S121Pij D(
ck

tjk
cbS~ki ûac! 2

1

2(dl tli
ad~lcukd!D

1raibj
D 5

1

2(ck ~2tjk
bc2tjk

cb!L̃kcai
2raibj

D 5
1

2(ck ~2Rjk
bc2Rjk

cb!SL̂kcai1(
dl

~2til
ad2til

da!LldkcD Vaibj
D 5

1

2(ck ~2tjk
bc2tjk

cb!SL̂kcai1 1

2(dl ~2til
ad2til

da!LldkcD
1raibj

E1 5(
c
tij
acF̃bc

2raibj
E1 5(

c
Rij
acSF̂bc2(

dlm
tlm
dbLldmcD

2(
c
tij
acS(

dlm
Rlm
dbLldmcD

Vaibj
E1 5(

c
tij
acSF̂bc2(

dlm
tlm
dbLldmcD

1raibj
E2 52(

k
tik
acF̃kj

2raibj
E2 52(

k
Rik
abSF̂kj1(

dem
tjm
deLmekdD

2(
k
tik
acS(

dem
Rjm
deLmekdD

Vaibj
E2 52(

k
tik
abSF̂kj1(

dem
tjm
deLmekdD

1raib j
F 5(aiub̃ j ) Vaib j

F 5(ai ûb j)
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scratch space required is of the order of a few times~2-30!
this number. This scratch space is used for storage of integral
distributions, some intermediates, and the CCSD trial vectors
in the iterative algorithm.

In designing an efficient algorithm for the calculation of
the linearly transformed vectors in CCSD, it is important to
consider the operation count and the vectorization of the
code as well as the memory and scratch-space requirements.
Significant reductions in the operation count can be achieved
by the use of global and local intermediates. Global interme-
diates do not depend on the trial vector coefficients—they
are constructed once and for all, written to disk and then read
back in when needed. Local intermediates on the other hand
depend onR1 and R2—they are calculated in each linear
transformation and either written to disk or kept in memory.
The use of intermediates is to some degree a compromise
between memory and scratch space requirements and com-
putational cost.

To avoid introducing new limitations on the size of the
systems that can be handled~above those already inherent in
the integral-direct CCSD model for the calculation of the
ground state energy!, we now require that the additional
scratch space requirements from the use of intermediates
should not exceed a few timesV2O2. In most applications
with reasonably accurate basis sets,O is considerably
smaller thanN. Similarly, the memory requirements for the
calculation of the linearly transformed vector should be com-
parable to those of the CCSD energy code. Concerning the
vectorization, we rely on our previous experience with the
implementation of the CCSD amplitude equations.26,27 We
now manipulate the formulas in Table I to obtain the linearly

transformed vector in accordance with the above discussion.
The results are given in Tables II and III. We discuss the
most important manipulations below.

Since we carry out transformations withR1 andR2 si-
multaneously, we may combine the1raib j

F , 1raib j
B and 2raib j

B

terms of the transformed vector

2raib j
B 11raib j

B 11raib j
F

5(
ab

~Laa
p Lbb

p !S (
cd

Ri j
cd~ac ûbd! D

1(
ab

~L̄aa
p Lbb

p 1Laa
p L̄bb

p !

3S (
cd

t i j
cd~ac ûbd! D

1(
ab

~Laa
p Lbb

p !~~a ī ûb j !1~a i ûb j̄ !!

1(
ab

~L̄aa
p Lbb

p 1Laa
p L̄bb

p !~a i ûb j !. ~63!

We may rewrite this expression in terms of the two contri-
butions

raib j
BF 5(

ab
~L̄aa

p Lbb
p 1Laa

p L̄bb
p !S ~a i ûb j !

1(
cd

t i j
cd~ac ûbd! D , ~64!

TABLE II. Contributions to the linear transformation vector in terms of
intermediates, reference amplitudes and trial vector amplitudes.

r̃ ai
E15(

c
Ri
cEac

1 rai
H52(

dkl
Rkl
adL̂ldki

r̃ ai
E252(

k
Rk
aEki

2 rai
G5(

cdk
Rik
cdL̂kdac

r̃ ai
I 52(

ck
~2tik

ac2tik
ca!F̃kc rai

I 5(
ck

~2Rik
ac2Rik

ca!F̂kc

r̃ ai
J 5F̃ai*

r̃ aibj
A 5(

kl
tkl
abG̃kil j raib j

A 5(
kl

Rkl
abGkil j

r̃ aib j
BF 5(

ab
Laa

p Lbb
p r̃a ib j

BF raib j
BF 5(

ab
~L̄aa

p Lbb
p 1Laa

p L̄bb
p !ra ib j

BF

r̃ aib j
C 52S 12 1Pi j D(

kc
t jk
cbC̃ckai raib j

C 52S 12 1Pi j D(
ck

Rjk
cbCckai

r̃ aib j
D 5

1

2 (
ck

~2t jk
bc2t jk

cb!D̃ckai raib j
D 5

1

2 (
ck

~2Rjk
bc2Rjk

cb!Dckai

r̃ aib j
E1 5(

c
t i j
acẼbc

1 raib j
E1 5(

c
Ri j
acEbc

1

r̃ aib j
E2 52(

k
t ik
abẼk j

2 raib j
E2 52(

k
Rik
abEk j

2

TABLE III. Intermediates in CCSD linear transformation from the right.

Global Intermediates Local Intermediates

raibj
BF 5~ai ûbj!1(

cd
tij
cd~acûbd! r̃ aibj

BF 5~ai ũ bj!1(
cd

Rij
cd~acûbd!

Gkilj5~ki ûlj !1(
cd

tij
cd~kcûld! G̃kil j5~ki ũ l j !1(

cd
Ri j
cd~kcu ld !

Cckai5~ki ûac!2(
dl

t l i
ad~ lcukd! C̃ckai5~ki ũ ac!5~ki ûac!1~ki û āc!

Dckai5L̂kcai1(
dl

~2t il
ad2t il

da!Lldke
D̃ckai5 L̃kcai5 L̂kc āi1 L̂kca ī

Ebc
1 5F̂bc2(

dlm
tlm
dbLldmc Ẽ bc

1 5F̃bc2(
dlm

Rlm
dbLldme

Ekj
25F̂kj1(

dem
tjm
deLmekd Ẽ ki

25F̃ki1(
dem

Rim
deLmekd

F̂pq5ĥpq1(
k
L̂pqkk F̃pq* 5(

k
L̂pqkk̄

F̃pq5F̃pq* 1F̂ p̄q1F̂p q̄
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r̃ aib j
BF 5(

ab
~Laa

p Lbb
p !S ~a ī ûb j !1~a i ûb j̄ !

1(
cd

Ri j
cd~ac ûbd! D . ~65!

In this way, we have rewritten the three contributions in two
terms. We identify the term in the second set of parentheses
in Eq. ~64! as a global intermediate, equivalent to the corre-
sponding term in the AO-driven calculation of theB andF
intermediates in Ref. 27.

Va ib j
BF 5~a i ûb j !1(

cd
t i j
cd~ac ûbd!. ~66!

In Ref. 27, it is demonstrated how this term can be imple-
mented in a fully AO-driven approach and with a minimal
operation count of 1/4N4O2. Having constructed this inter-
mediate once, we need only perform the additional contrac-
tion in Eq. ~64! in N2O2(N1V) operations. The otherB/F
term in Eq. ~65! is constructed using a local intermediate
similar to Eq.~66! and by means of a similar contraction. We
have thus obtained savings in the operation count of about
V3O3.

Consider theA terms

2raib j
A 11raib j

A 5(
kl

tkl
abS ~kī û1 j !1~ki û1 j̄ !

1(
cd

Ri j
cd~kcû1d! D

1(
kl

Rkl
abS ~ki û1 j !1(

cd
t i j
cd~kcû1d! D . ~67!

The term inside the second pair of parentheses is identical to
theG intermediate in the energy code~see Table II! whereas
the term inside the first pair of parentheses corresponds to the
generalized trial-vector dependent localG intermediate. We
may thus write theA term as a contribution from a global
intermediate and as a contribution from a local intermediate.
In Ref. 27 it was demonstrated how the globalG intermediate

can be obtained fromra ib j
BF . We find here in a similar way

that the local intermediate can be obtained fromr̃ a ib j
BF since

G̃kil j5(
ab

~Lak
p Lb l

p !S ~a ī ûb j !1~a i ûb j̄ !

1(
cd

Ri j
cd~ac ûbd! D . ~68!

We may carry on with similar manipulations. In Table II we
give the expression of the various contributions in terms of
the global and local intermediates in Table III. Local inter-
mediates depending onR and the terms involving these in-
termediates are distinguished from the remaining terms by a
tilde. We have discussed a few of these terms only and for
the sake of conciseness give only a few general remarks on
the evaluation of the remaining terms.

~1! The global intermediates are identical to the interme-
diates for the CCSD amplitude equations with the trivial ex-
ception of a factor of 1 in front of the second term in theC
andD intermediates rather than a factor of1

2 as in the energy
code. On the other hand, the local intermediatesC̃ and D̃
have not2 contributions. This way of writing the terms is
possible for theC andD terms since these terms are sym-
metric to interchange ofR2 andT2 amplitudes and it is con-
venient since it saves contractions oft2 with integrals
(V3O3). This is not the case for the other bilinear contribu-
tions to theE and theA terms and instead of storing very
large intermediates of the sizeV3O andV4, we calculate the
E andA terms by one local and one global intermediate. We
demonstrated above how the localG intermediate can be
constructed easily from the localB/F intermediate. The cal-
culation of theE intermediate scales asN2V2O. The calcu-
lation of theE andA intermediates is thus far from being the
most time consuming part of a CCSD linear transformation.

~2! The local intermediates are analogous with the global
intermediates with the extra complication that the integrals
may be non-totally symmetric and may contain several con-
tributions. Consider for example theC̃ intermediate. The two
terms are constructed in a loop overd as

TABLE IV. Operation count of terms in CCSD linear transformation. Nomenclature refers to Tables II and III.
Only the most dominant operation count in each term is reported.

MO-algorithm
without intermediates

MO-algorithm
with intermediatesa

AO-algorithm
with intermediatesa

G-intermediate 1/2V2O4 1/4V2O4 NO3~N1O!
A-terms V2O4 V2O4 V2O4

BF-terms 1/4V4O21V3O3 1/4V4O2 1/4N4O214N3O2

C-terms 3V3O3 2V3O3 2V3O3

D-terms 3V3O3 2V3O3 2V3O3

E-terms 4V3O2 2V3O2 N2VO2

G-terms V3O2 V3O2 N3O21N2VO
H-terms V2O3 V2O3 NVO3

I -terms V2O2 V2O2 V2O2

J-terms VO VO VO
Sum 1/4V4O217V3O313/2V2O4 1/4V4O214V3O315/4V2O4 1/4N4O214V3O31V2O4

aIntermediates are restricted to having a maximum size of order N2O2.
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C̃dkai5~ki ûad!5~kī ûad!1~ki û ād!. ~69!

For a fixed indexd, the two terms are calculated and then
added together and subsequently written to disk as one inter-
mediate. As for theC intermediate, theC̃ intermediate is
read in, thed index transformed to MO basis, and the result-
ing MO intermediate contracted withT2 and added to the
result vector. The last part is done in a loop over batches of
indices (ai) in order to obtain the highest possible vector
lengths without increasing the memory requirements. A
similar discussion applies to theD terms.

~3! The terms arising in the transformation by the
singles-singles block of the Jacobian have been expressed in
terms ofE intermediates. In this way we avoid having both
T2 and R2 in memory inside thed loop, which would be
necessary if these contributions were calculated asG andH
terms in Table I. Additional operation counts of the order
N3O2 are thus avoided, which is particularly important for
the CC2 model.

~4! Using the expressions in Tables II and III, we obtain
the bilinear contributions as terms with contraction ofT2
with local intermediates andR2 with global intermediates.
Accepting IO ofT2 andR2 amplitudes after thed loop, we
may divide the contractions into a section withT2 in memory
and a section withR2 in memory.
The algorithm for calculating integral-direct excitation ener-
gies can be summarized as follows:

~1! Calculate reference amplitudes in the integral-direct
technique of Refs. 26, 27.

~2! Calculate global intermediates:

raibj
BF , Cckai, Dckai, Eki

2 , Ebc
1 , F̂pq.

~3! Excitation energy calculation—a generalized Davidson
algorithm74 combined with the calculation of linearly
transformed vectors in an integral-direct algorithm:

~A! Construction of auxiliary matrices:

Lap
h , Lap

p , L̄ap
h , L̄ap

p , etc.

~B! Loop over first atomic indexd. Add contributions to
intermediates and result-vectors:

rai
G , rai

H ,

r̃ aibj
BF , C̃ckai, D̃ckai, Ẽki

2 , Ẽbd
1 , F̃ab* ,

In memory: 1r̃ a ib j
BF , Rkl

cd and ~abgd!;3/2V2O2

11/2N3.

~C! Transform to MO-basis:

r̃ aibj
BF , raibj

BF , F̃pq* , F̃pq.

~D! Read in global intermediates and contract with
(Rk

c , Rkl
cd):

rai
I , r̃ ai

E1, r̃ ai
E2, r̃ ai

J ,

raibj
C , raibj

D , raibj
E1 , raibj

E2 , raibj
A2 ,

In memory: raib j , Rkl
cd ; 3/2V2O2.

~E! Contract local intermediates withtkl
cd:

r̃ ai
I ,

r̃ aibj
C , r̃ aibj

D , r̃ E1
aibj , r̃ aibj

E2 , r̃ aibj
A ,

In memory: raib j , tkl
cd ; 3/2V2O2.

In the specifications of the memory requirements, we have
only included the most important vectors with requirements
larger than N2O. In this algorithm, the maximum memory
requirements are inside the loop over one atomic index,
where we need to keep the1r̃ a ib j

BF andRkl
cd together with the

integral distribution. After this loop, we may perform IO on
t2 andR2 amplitudes. The algorithm requires that the ampli-
tude vectors are stored as the full (ai,b j) matrix while the
result vector may be packed as (ai>b j). We thus have a
memory requirement of the order of 3/2V2O211/2N3, which
is similar to the one for optimizing the CC state.

In addition, there are options for saving CPU time when
scratch, memory and IO conditions allow this to happen. The
R2 amplitudes with the occupied indices transposed may be
kept in memory saving, CPU time in calculation of theE
intermediates. There is also the option for performing more
linear transformations in one integral calculation. The inte-
gral calculation is performed in a loop over shells and for
each shell we may perform I/O on trial vectors:
Loop shells

Calculate integrals
Loop Trial vectors

Loop AO-index
Calculate

End Loop
End Loop

End Loop
This scheme save recalculations of integrals at the cost of
increased I/O. In integral-direct calculations, the recalcula-
tion of integrals may take a significant part of the total CPU
time, in particular for the CC2 model.

In order to compare the efficiency of the AO and the MO
integral based algorithms we have in Table IV give the op-
erator count for the individual terms in the two algorithms.

E. The CC2 model

We introduce a partitioning of the HamiltonianH into a
Fock operatorF and a fluctuation operatorU that describes
the difference between the true electron-electron repulsion
and the Fock potential:

H5F1U. ~70!

CC2 is defined as an approximation to CCSD as follows:
The CCSD singles equations Eq.~28! are retained in their
original form but the doubles equations Eq.~29! are approxi-
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mated to be correct through first order only with the singles
treated as zero-order parameters.15 The CC2 equations are
thus given by

^m1uĤ1@Ĥ,T2#uHF&50, ~71!

^m2u@F,T2#1ĤuHF&50. ~72!

The CC2 doubles equations given an MP2 like expression,
but with T1 transformed integrals:

~ea1eb2e i2e j !t i j
ab1~ai ûb j !50. ~73!

The CC2 response function is given in Ref. 15. Excita-
tion energies and transition moments are determined from
the poles and residues of the linear response function. The
CC2 excitation energies are in accordance with Eqs.~10! and
~12! determined from the eigenvalue equation Eq.~10! where
the CC2 Jacobian is

Am in j
5S ^m1u@Ĥ,tn1#1@@Ĥ,tn1

#,T2#uHF& ^m1u@Ĥ,tn2
#uHF&

^m2u@Ĥ,tn1
#uHF& dmnvm2

D . ~74!

The doubles-doubles block is a simple diagonal consisting of
orbital energy differences. The CC2 linear transformed vec-
tor thus becomes

1rai5 K ai UH̃UHF L 1 K ai U@H̃,T2#UHF L , ~75!

1raib j5 K abi j UH̃UHF L , ~76!

2rai5 K ai U@Ĥ,R2#UHF L , ~77!

2raib j5 K abi j U@F,R2#UHF L . ~78!

1rai and
2rai are calculated as for the CCSD model,2raib j is

a trivial multiplication of the doubles amplitudes with orbital
energies. The calculation of the1raib j vectors is performed
with direct transformation to MO basis as

1raib j5~ai ûb j !5~ āi ûb j !1~aī ûb j !1~ai û b̄ j !

1~ai ûb j̄ !. ~79!

III. BENZENE SINGLET EXCITED STATES

A. Calculations

By calculating the singlet excitation energies of the ben-
zene molecule, we will demonstrate that the combination of
integral-direct CC techniques with a hierarchy of CC models
opens up new possibilities for the reliable theoretical assign-
ment of electronic excitation spectra. All calculations were
carried out at the same geometry as in recent CASPT2~Ref.
56! and SOPPA~Ref. 57! studies, which is close to the ex-
perimental geometries. Only vertical excitation energies are
considered in this study. First, we discuss the convergence of
the calculations with respect to the basis set. Next, the effects
of correlation are studied by performing calculations in the
hierarchy of coupled cluster models CCS, CC2, CCSD, and
CC3 and also by using perturbative triples corrections

CCSDR~3! and CCSDR(1a). The errors in the solution of
the electronic problem are estimated and comparisons are
made with other recent calculations. Finally, we compare our
theoretical results with experiments.

All calculations were carried out on a SGI Power Chal-
lenge computer. A single linear transformation with one trial
vector was observed to take slightly less time than one
coupled cluster energy iteration, in agreement with the analy-
sis of Section II. The option of performing transformations
on several vectors of same symmetry in one integral calcu-
lation reduced the average CPU-time per transformed vector
somewhat. The relative costs of the individual terms in the
transformations are similar to those for the CCSD ground-
state optimizations in Ref. 27, to which we refer for details
on timings.

B. Basis set investigations

The singlet excitation energies obtained in the CC2 and
CCSD calculations are given in Table V for the different
basis sets. The excited states are classified as valence and as
Rydbergpp* and ps* excitations. In addition to calcula-
tions on then53 Rydberg series converging towards the first
ionization potential, we also give a few results for then54
Rydberg states and for the first Rydberg state ofE2g sym-
metry, corresponding to the second ionization potential. All
electrons were correlated in these calculations.

The basis-set study concentrates on extensions of the
aug-cc-pVDZ basis set.75,76 Additional diffuse functions
were placed at the center of mass~CM! in order to describe
the Rydberg states. In the previously published CC2 basis-set
study,51 we investigated the saturation in the CM functions at
the aug-cc-pVDZ level. First, we added a set of contracted
optimized atomic natural orbital~ANO! functions of Lorent-
zon et al. ~CM8!,56 where the associated uncontracted set
corresponds to the universal primitive functions of Kauf-
mann et al.77 Next, calculations were carried out using
smaller CM sets of primitives, p, andd functions. For the
n53 Rydberg series, we found that the CM2 basis—which
contains two sets of primitives, p, and d functions with

6930 Christiansen et al.: Excitation energies in coupled cluster theory

J. Chem. Phys., Vol. 105, No. 16, 22 October 1996

Downloaded¬29¬Jan¬2010¬to¬147.156.182.23.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



exponents 0.01 and 0.0033~the same exponents for all an-
gular momenta!—gave results within 0.05 eV of the CM8
results. To address the problem of valence-space saturation,
we have here carried out calculations using an aug-cc-pVTZ
basis augmented with the CM2 functions. We have not car-
ried out the full basis-set investigation at the CCSD level—
only the extension from aug-cc-pVDZ-CM2 to aug-cc-
pVTZ-CM2 was considered. In addition, we have carried out
ANO calculations with the Rydberg basis set of Lorentzon
et al. here referred to as ANO1.

In Table V, we give the CC2 and CCSD results for these
basis sets. We observe changes in the valence excitation en-
ergies ranging from20.06 to 0.08 eV going from aug-cc-
pVDZ-CM2 to aug-cc-pVTZ-CM2. The Rydberg excitations
shift by 0.1 to 0.2 eV. The 21E1u state constitutes an excep-
tion, with shifts of only 0.04 eV. For a balanced description
of the electronic ground state and the Rydberg states, it is
essential to have a good description of the valence region
and of the penetration of the Rydberg electron.

Except for 31E2g, all Rydberg states have the same cat-
ionic core. The constant difference between aug-cc-pVDZ-
CM2 and aug-cc-pVTZ-CM2 for these states suggests that
the added flexibility of the aug-cc-pVTZ-CM2 basis is im-
portant for accurate calculations of excitations to Rydberg
states. We conclude that a basis set of augmented double-

zeta polarization quality may give errors of the order 0.1–0.2
eV, even when supplemented with CM functions. This find-
ing confirms the results of the CC2 basis set investigation.
We note that the ANO1 basis set gives results of augmented
double-zeta quality. The different behavior of the 21E1u
state in this respect is one of several indications that this state
is not a ‘‘pure’’ Rydberg state. Since the 31E2g state has a
different cationic core, its behavior is expected to be differ-
ent. Furthermore, there may be some mixing of this state
with the valence 21E2g state.

C. Correlation effects

In Table VI, we report the ANO1 singlet excitation en-
ergies of benzene using CCS, CC2, CCSD, and CC3. The
results obtained from perturbative triples approaches
CCSDR~3! are also listed. In the calculations in Table VI, we
have frozen the core electrons~using canonical Hartree-Fock
orbitals!. Comparing the CC2 and CCSD results of Table VI
with the calculations in Table V~where the core electrons are
not frozen!, we find that the effect of freezing the core elec-
trons is less than 0.01 eV. Significant computational savings
are obtained by freezing the core electrons in correlated cal-

TABLE V. C6H6 singlet excitation energies in eV and the percentage of single excitation in the right excitation vectors obtained in CCSD.a

ANO1b aug-cc-pVDZ-CM2c aug-cc-pVTZ-CM2d

One electron Basis: CC2 CCSD CC2 CCSD CC2 CCSD
CC-Model DE DE DE DE DE DE %T1

1 1B2u ~V-pp* ! 5.265 5.189 5.274 5.192 5.232 5.180 91
1 1B1u 6.556 6.590 6.502 6.537 6.463 6.481 95
1 1E1u 7.018 7.171 6.991 7.148 7.070 7.227 95
2 1E2g 8.967 9.177 8.951 9.157 8.909 9.168 87
2 1E1u (R-pp* ,n53) 7.371 7.579 7.283 7.481 7.319 7.501 95
2 1A1g 7.656 7.855 7.644 7.856 7.806 7.984 96
1 1E2g 7.651 7.847 7.638 7.844 7.798 7.972 95
1 1A2g 7.681 7.880 7.667 7.879 7.829 8.009 95
1 1E1g (R-ps* ,n53) 6.403 6.547 6.304 6.440 6.452 6.563 95
1 1A2u 6.838 6.988 6.811 6.964 6.970 7.092 95
1 1E2u 6.892 7.056 6.868 7.036 7.028 7.169 95
1 1A1u 6.962 7.139 6.943 7.126 7.120 7.262 96
1 1B2g 7.466 7.659 7.436 7.626 7.600 7.760 95
1 1B1g 7.461 7.660 7.425 7.617 7.587 7.751 95
2 1E1g 7.457 7.639 7.422 7.588 7.557 7.671 95
3 1E1g 7.519 7.698 7.482 7.656 7.613 7.772 95
3 1E2g

(R-e2gs-a1g,n53)
8.918 9.413 8.781 9.251 8.879 9.387 95

1E2g (R-pp* ,n54) 8.173 8.456 8.339 8.591 96
1A1g 8.179 8.464 8.347 8.599 96
1A2g 8.185 8.469 8.353 8.605 96

aGeometry as in Ref. 56. The geometry isRCC51.3950 Å andRCH51.0850 Å. Excitation energies are converged to an uncertainty of about 0.001 eV. The
blank entries are due to excitations not obtained due to basis set inadequacy. All electrons are correlated.
bANO basis set from Ref. 56: C:@1494/431#, H:@84/21#, CM@888/111#, giving 147 contracted basis functions. Total ground state energies in hartree are
EHF52230.771810,EMP252230.634979,ECC252231.666327,ECCSD52231.666327. Results taken from Ref. 51.
cAugmented correlation consistent pVDZ basis set with extra center of mass functions as described in Ref. 51: C:@1052/432#, H:@52/32#, CM:@222/222#, giving
210 contracted basis functions. Total ground state energies in Hartree areEHF52230.728171, EMP252231.556430, ECC252231.563516,
ECCSD52231.591262. CC2 results from Ref. 51.
dAugmented correlation consistent pVTZ basis set with extra center of mass functions as described in Ref. 51: C:@11632/5432#, H:@632/432#, CM:@222/222#,
giving 432 contracted basis functions. Total ground state energies in Hartree areEHF52230.780888,EMP252231.855173,ECC252231.864721,
ECCSD52231.881229. CC2 results from Ref. 51.
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culations on large molecules. It should be emphasized, how-
ever, that the basis sets used here are not adequate for de-
scribing core effects.

The effect of triple excitations on the excitation energies
varies significantly. For most of the Rydberg states, very
small effects are observed—less than 0.02 eV. Exceptions to
this rule are the 21E1u p-p* Rydberg state and the 31E2g
state, where the triples contributions are as large as20.16
eV. For the1E1u,

1B1u, and
1B2u valence states, we also find

moderate effects of triples excitations, ranging from20.03
to 20.11 eV. We expect that in these cases of moderate
triples corrections, the differences between CC3~or
CCSDR~3!! and CCSD should give a rather accurate indica-
tions of the effects of higher excitations.

Except for the 21E2g state—to which we shall return in
the next section—we observe good convergence in the CC
hierarchy. Thus, whereas the CCS errors relative to CC3 are
large for valence excitations and the 21E1u state~up to about
1 eV!, CC2 reduces the error to less than 0.2 eV. For most
Rydberg excitations, however, the CCS method gives re-
markably good results. Indeed, for these excitations, CC2
does not represent any improvement on CCS, overshooting
the doubles contributions compared to CCSD. This is in con-
trast to what is usually observed, and is likely to be due to
fortuitous good results for CCS. The magnitude of the shift
at each step in the hierarchy CCS, CC2, CCSD, CC3 are for
all excitations except 21E2g similar to recent benchmark cal-
culations on several small molecules, where CC3 gave re-
sults within 0.05 eV of the FCI results for excitations domi-
nated by a single replacement~with a t1 weight larger than
90%!.

The 21E2g excitation is rather special, having consider-

able contributions from double replacements relative to the
ground state. The double replacement character is not de-
scribed at all in the CCS model, which is therefore com-
pletely in error for this excitation. In CC2, the double exci-
tation part is only described to zero order in the ground state
fluctuation potential. In CCSD, the description of the double
replacement character is improved to first order, and for CC3
and the non-iterative triples methods second-order quality is
obtained. Whereas large errors still persist for pure doubles-
replacement dominated excitations, single-replacement
dominated excitations with a significant double-replacement
character are expected to be described reasonably well at the
CCSD level.

For the 21E2g excitation, thet1 weight is 85% in CCSD
and a reasonably accurate excitation energy should therefore
be expected for this wave function. Nevertheless, we find
that the effect of the triples is very large and that thet1
weight is reduced to 66% in CC3. The different triples ap-
proaches give results ranging from 8.4 to 8.7 eV—that is,
from 0.5 to 0.8 eV from the CCSD result. Clearly, the large
shift relative to CCSD and the variations in results obtained
for the different triples approximations indicate that this state
is not described as accurately as the other states. The CC2
and CCSD solutions for the 21E2g excitation do not appear
to be very different in character and thet1 weight does not
appear to be highly critical for an accurate CCSD descrip-
tion. In contrast, in for exampleN2 we have found in recent
FCI benchmark calculations47 that a state with a similart1
weight was described within an error of 0.4 eV in CCSD, but
with uniform convergence in the CCS, CC2, CCSD, and
CC3 series. The large effect of higher excitations indicates
that when considering systems with conjugatedp electron

TABLE VI. C6H6 singlet excitation energies in eV for transitions to valence andn53 Rydberg states.a Weight of singles part of right excitation vector in
CCSD.

Method
CCS
~f.c.!

CCS
~f.c.!

CCSD
~f.c.!

CC3
~f.c.!

CCSDR~3!
~f.c.!

%T1
~CCSD f.c.!

%T1
~CC3 f.c.!

1 1B2u ~V-pp* ! 6.028 5.268 5.189 5.078 5.120 91 86
1 1B1u 6.194 6.556 6.590 6.540 6.558 95 93
1 1E1u 7.176 7.013 7.166 7.132 7.150 95 93
2 1E2g 10.584 8.970 9.174 8.409 8.691 85 66

2 1E1u ~R-pp* ! 8.056 7.371 7.578 7.419 7.410 94 92
2 1A1g 7.778 7.649 7.849 7.859 7.863 95 93
1 1E2g 7.801 7.644 7.841 7.850 7.854 95 93
1 1A2g 7.856 7.675 7.874 7.880 7.884 95 93

1 1E1g ~R-ps* ! 6.620 6.397 6.541 6.513 6.523 95 93
1 1A2u 6.950 6.832 6.982 6.974 6.982 96 93
1 1E2u 7.119 6.886 7.050 7.032 7.043 95 93
1 1A1u 7.287 6.956 7.133 7.109 7.121 95 92
1 1B2g 7.685 7.460 7.653 7.650 7.657 95 93
1 1B1g 7.699 7.455 7.653 7.648 7.655 95 93
2 1E1g 7.596 7.451 7.632 7.633 7.639 95 93
3 1E1g 7.729 7.512 7.692 7.687 7.693 95 93

3 1E2g ~R-ss* ! 10.835 8.915 9.407 9.275 9.308 95 93

aGeometry as in Ref. 56:RCC51.3950 Å andRCH51.0850 Å. Basis set is the ANO1 basis set see footnote to Table V. The Carbon 1s core electrons are frozen
in all calculations. Excitation energies are converged to about 0.001 eV. Total ground state energies in Hartree areEHF52230.771810,EMP252231.596300,
ECC252231.605665,ECCSD52231.628657,ECC352231.673378.
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systems, one should be careful since connected higher exci-
tations may be important for some states although this is not
completely evident from thet1 weight. The analogue to this
state can be found in many organic molecules.

D. Comparison with other theoretical studies

In Table VII are given selected theoretical results for the
excitation energies in benzene. The CASSCF and CASPT2
calculations of Ref. 56 and the RPA and SOPPA calculations
of Ref. 57 have been carried out using the same ANO1 basis
set and the same geometry as in our calculations and a direct
comparison with these results is thus possible. For all exci-
tations except the 21E2g valence state, we expect as dis-
cussed in the previous section that the CC3 excitation ener-
gies are very close to the exact results in the same basis and
at the same molecular geometry.

The CASSCF errors are large for the valence states—
more than 1 eV for the1E1u valence state. For the Rydberg
p-p* states, the CASSCF results are 0.8 to 1.0 eV below the
CC3 results. For thep-s* states, they are 0.3 to 0.4 eV
below CC3. The CASPT2 correction reduce these errors sig-
nificantly. Although the overall corrections to the total ener-
gies and to the excitation energies in CASPT2 are large, the
excitation energies are within 0.3 eV of the CC3 results.
Thus, with CASPT2 corrections of up to 1.0–1.5 eV, the
valence states are improved to be only 0.24~1 1B2u!, 0.24
~1 1B1u! and 0.1~1 1E1u! eV lower than CC3. For the Ryd-

bergp-p* excitation, we find that the 21E1u state is 0.26 eV
below CC3, whereas for the other state the CASPT2 results
is of order 0.1 eV lower. Again we observe that the 21E1u

state behaves differently from the other Rydberg states. For
the Rydbergp-s* states, the CASPT2 results are typically
0.1 eV below CC3. The CASPT2 excitation energies are
consistently lower than the CC3 energies.

For the 21E2g valence-state excitation, we observe a
large difference between the CC and CASPT2 results: 8.4 eV
for CC3 versus 7.9 eV for CASPT2. For this excitation, the
CASSCF and CASPT2 results are in close agreement. This
agreement does not imply that the CASPT2 results are accu-
rate, however this excitation is difficult to describe in
coupled cluster theory but presents no special problems for
CASPT2. The large difference between CCSD and CC3 sug-
gests that the position of this excitation cannot be fully re-
solved in this study.

CASPT2 calculations have also been reported using an-
other ANO basis and different active spaces.55 It is interest-
ing to note that differences of up to 0.2 eV are obtained in
these CASPT2 calculations. Similar differences were also
found in recent CC2 calculations using the same two ANO
basis sets.51 However, there is little correspondence between
the differences for the excitation energies obtained in the
CASPT2 and in the CC2 calculations. We conclude that ad-
ditivity of basis-set effects does not hold between CASPT2

TABLE VII. C 6H6 singlet excitation energies in eV from selected theoretical investigations.

Method
CAS-
SCFa

CAS-
PT2a RPAb SOPPAb MRMPc CISDTd SAC-CIe MRCIf SCVBg

CIS~D!h

~f.c.!
CCSDh

~f.c.!

1 1B2u ~V-pp* ! 4.80 4.84 5.82 4.69 4.77 5.00 5.25 5.19 4.94 5.36 5.23
1 1B1u 7.32 6.30 5.88 6.01 6.28 7.64 6.60 7.20 7.49 6.76 6.68
1 1E1u 8.53 7.03 7.16 6.75 6.98 8.34 7.47 8.16 8.12 7.41 7.47
2 1E2g 7.96 7.90 7.88 8.33 8.17 7.98

2 1E1u ~R-pp* ! 6.46 7.16 7.50 7.03 7.01 7.26 6.91 7.05 7.10
2 1A1g 7.14 7.74 7.77 7.56 7.62 7.92 7.64 7.88 7.77
1 1E2g 7.09 7.77 7.80 7.55 7.63 7.90 7.64 7.90 7.76
1 1A2g 7.08 7.81 7.85 7.59 7.66 7.94 7.57 7.80 7.81

1 1E1g ~R-ps* ! 6.26 6.38 6.54 6.18 6.39 6.31 6.32 6.33 6.87 6.84
1 1A2u 6.66 6.86 6.94 6.70 6.84 6.88 6.69 6.86 7.33 7.32
1 1E2u 6.74 6.91 7.11 6.76 6.92 6.99 7.03 6.94 7.42 7.44
1 1A1u 6.82 6.99 7.28 6.83 6.93 7.10 7.23 7.04
1 1B2g 7.33 7.58 7.68 7.35 7.53 7.42 7.55
1 1B1g 7.29 7.58 7.70 7.35 7.51 7.42 7.51
2 1E1g 7.33 7.57 7.59 7.34 7.56 7.35 7.56
3 1E1g 7.37 7.57 7.73 7.40 7.61 7.44 7.48

aReference 56.RCC51.3950 Å andRCH51.0850 Å. Bsis set is the ANO1 basis set described in footnotes for Table V.
bReference 57.RCC51.3950 Å andRCH51.0850 Å. Basis set from Ref. 56, the ANO1 basis set described in footnotes for Table V.
cReference 58.RCC51.397 Å andRCH51.084 Å. Basis set is cc-pVDZ1CM@888/111# ~123 basis functions!.
dResults from Table V in Ref. 52.RCC52.63662 bohr andRCH52.05039 bohr. Basis set is a C@95/42#,H@4/2# augmented with 2pp diffuse functions were
added on each carbon.~108 basis functions!.
eResults from Tables V and IX in Ref. 54.RCC51.397 Å andRCH51.084 Å. Basis set is an extension of the basis used in the CISDT calculations~basis 0!
The result is for basis II for valence states and basis III for Rydberg states. Basis II5basis 01polarization functions: C~1d!, H~1p!. ~138 basis functions! Basis
III5Basis 01(2s2p2d) on the center of mass~126 basis functions!.
fReference 60. Hartree-Fock optimized geometries not given in Ref. 60. Results for basis B: C@95/42#, H@4/2#, CM@322/322#. ~93 basis functions!.
gReference 59. Results from Tables XXIV and XXV in Ref. 59.RCC51.395 Å andRCH51.085 Å. The present result correspond to Basis II in Ref. 54 for
valence states and Basis III for Rydberg States. These are similar to the basis set of the SAC-CI studies.
hResult, Ref. 78.RCC51.395 Å andRCH51.085 Å. Basis set is 6-311G*.
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and coupled cluster theory and/or that the effect of using
different active spaces is large.

The RPA results of Packeret al. are of the same quality
as the CCS results~the 21E1u state is again an exception!.57

Note that no results are given for the 21E2g state since it is
not included in the investigation of Packeret al., probably
because of the large contributions from double excitations.
The SOPPA excitation energies are lower than the CC ener-
gies for all excitations. Note that CC2 is too low relative to
CC3 for all Rydberg states and that SOPPA is still lower for
these states. For these states, the difference between SOPPA
and CC3 is 0.3 eV and between CC2 and SOPPA of the
order 0.2 eV. For the valence states, the difference between
SOPPA and CC3 is of order 0.4 to 0.5 eV. There is no
parallel behavior of the CC2 and SOPPA results.

In another recent investigation, Hiraoet al. have pre-
sented benzene excitation energies using their multireference
Mo” ller-Plesset perturbation theory.58 No direct comparison is
possible since these workers employ a geometry as well as a
basis set~cc-pVDZ augmented with Rydberg functions!
slightly different from ours. The results of Hiraoet al. are
within 0.12 eV of the CASPT2 results.

Given in Table VII are also the configuration interaction
~CI! calculations with singles, doubles and triples excitations
~with selected configurations! of Hay and Shavitt from 1973
~Ref. 52! as well as results from symmetry-adapted cluster
CI ~SAC-CI!.54 At a formal level, the excitation energies in
SAC-CI are equivalent to CC linear response energies. How-
ever, due to the introduction of various approximations, the
resulting SAC-CI approach is significantly different from the
coupled cluster linear response method. Also listed are the
multireference CI~MRCI! results of Palmer and Walker and
spin-coupled valence-bond results of da Silvaet al.59 In spite
of the small basis sets~relative to present standard!, remark-
ably accurate excitation energies are obtained for the Ryd-
berg states, whereas the results for the valence excitations are
less accurate as is evident from Table VII.

A preliminary set of CCSD excitation-energy calcula-
tions on benzene has been reported by Head-Gordonet al.78

using a 62311G* basis set and frozen core orbitals. Results
from CI singles CIS~equivalent to CCS for excitation ener-
gies! and CIS with a perturbative doubles correction CIS~D!
were also reported in this paper. The CIS~D! and CCSD
excitation energies are given in Table VII. Comparing these
energies with ours in Tables V and VI, it is evident that this
basis set gives errors of order 0.3 eV. As stated by Head-
Gordonet al., these calculations should be considered as pre-
liminary. CIS~D! and CC2 are both correct to second order in
the ground-state fluctuation potential for a single-
replacement dominated excitation. Accordingly, we find that
the difference between CIS~D! and CCSD to be of the same
order of magnitude as the difference between CC2 and
CCSD.

E. Comparison with experiment

Numerous experimental investigations of the benzene
spectrum have been reported. In our calculations and those

reported by others, only vertical excitation energies have
been computed. A comparison with the experimental 0-0 ori-
gin transitions requires that geometry relaxation and zero-
point vibrations are taken into account. For high-symmetry
molecules like benzene, Jahn–Teller effects are also
important.79,80

In this study, we have not investigated the geometry and
vibrational effects in detail. Many effects thus still remain to
be accounted for in order to give a detailed comparison with
experiment and to offer a definite theoretical description of
the complete benzene spectrum, including the vibronic struc-
ture and so on. In the following, we briefly review the ex-
perimental results in order to emphasize the assumptions that
must be made in comparisons with the theoretical results and
the limitations of such comparisons.

In Table VIII, we give origins for the benzene transitions
when these have been assigned. Also, we give in some cases
the value for the vibrational transition with maximum fre-
quency or simply the maximum in the cases where the vibra-
tional structure has not been resolved. Although we may not
interpret the maximum transitions as energy differences be-
tween the potential energy-surfaces in the Born-
Oppenheimer picture, the difference between energies at the
Franck-Condon maximum and the origin may give an esti-
mate of geometry relaxation effects.

1. Valence states

The valence states of benzene have most recently been
observed by Hiraya and Shobatake in direct absorption spec-
tra of jet-cooled benzene.73 The 1B2u valence state is ob-
served with an origin at 4.787 eV and a maximum at 4.902
eV. These results are in excellent agreement with earlier
electron-impact spectra of Lasserteet al.63 ~4.790~O!, 4.902
~max!! and earlier ultraviolet absorption spectra.

The 1B1u valence state is observed by Hiraya and Sho-
batake to have an origin at 6.0348 eV and maximum at 6.204
eV. In this area, a rather diffuse vibrational progression is
observed in electron-impact spectra. Lasserteet al.argue that
two states contributes—the one with a peak at 6.2 eV and the
other with bands at 6.31, 6.41, 6.53 eV—but no term symbol
was assigned for these states. The observed region agrees
with the 1B1u maximum band and a series originating from
the 11E1g Rydberg state discussed later. Bands similar to the
one of Lasserteet al. is observed in the absorption spectrum
by Koch and Otto.64

The 11E1u valence state has been observed in many
spectra. In the absorption spectra of Koch and Otto, a maxi-
mum peak is observed at 6.94 eV, which is probably due to
the 11E1u valence state. This transition agrees well with
what was observed by Wilkinson.62 Hiraya and Shobatake
gives an origin for this transition at 6.866 eV.

For all these states, we have differences between the 0-0
transition and the maximum-intensity transition of about 0.1
to 0.2 eV. A preliminary CCSD calculation using the1B2u
experimental geometry81 ~RCC51.434 Å,RCH51.07 Å! gave
a difference between the vertical and the adiabatic transitions
of 0.214 eV. Taking the large basis-set CCSD results and
including this correction and corrections for the effect of
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triples, we arrive at an estimate of 4.855 eV for the adiabatic
transition. Using the incomplete set of frequencies given by
Parmenter for the ground state and for the1B2u state,

82 we
obtain a difference in zero-point energy of about 0.06 eV,
considering only the modes where data are given for the1B2u
state~half of the modes!. This correction brings the result
even closer to the 4.787 eV origin.

It should be emphasized that these estimates are rather
crude. However, it is clear that before entering into geometri-
cal considerations we cannot hope for better agreement than
the one in Table VIII. Although the above estimates are pre-
liminary, it appears probable that geometry and zero-point
vibrational effects should account for a large fraction of the
difference between the 0-0 transitions and the coupled cluster
vertical excitation energies. Most significantly, it appears to
be more important to take into consideration geometrical ef-
fects than to go beyond CCSD for these excited states.

In laser flash experiments of Nakashimaet al., three
peaks were observed and interpreted as states approximately
7.0 eV, 7.8 eV and 9.4 eV above the ground state.67,68 The
excitation energies from the ground state are obtained by
addition of the observed transition from the1B2u state and a

value of 4.72 eV for the ground state to1B2u state~0-0 tran-
sition from Ref. 82 in cyclohexane solution!. Use of newer
values for the1A1g to

1B2u excitation may give a small in-
crease in the magnitudes of the excitation energies as seen
from the numbers in Table VIII.

The first state has been assigned1E1u, in reasonably
agreement with the observations cited above. Lorentzon
et al. and others choose to assign the second state as 21E2g,
based on the suggestion that the 11E2g state is very diffuse
and the transition to this state should be considerably less
intense than the excitation to the valence state 21E2g.

56 If the
7.8 eV peak does represent the 21E2g valence state, it may
still contain contributions from the 11E2g Rydberg state.
These assignments leave us with the problem of interpreting
the 9.4 eV peak. We find it difficult to agree on an excitation
energy of 7.8 eV but neither can we conclude that the 9.4 eV
peak corresponds to the 21E2g valence state. Triples are cer-
tainly important for this state and the neglect of triples could
lead to an incorrect assignment. Furthermore, we have addi-
tional uncertainties since geometry and vibration effects in
all three states may play a role.

TABLE VIII. C 6H6 singlet excitation energies in eV. CCSD excitation energies and triples corrections. Experi-
mental origins and maxima.

Method
DE

CCSDa

DETriples

~f.c. CC3-
CCSD ANO1!a

DE
Origin

DE
Maximum

1 1B2u(e1g→e2u) 5.180 20.111 4.7873,b 4.790c 4.902b,c

1 1B1u(e1g→e2u) 6.481 20.050 6.0348b 6.204b

1 1E1u(e1g→e2u) 7.227 20.034 6.8656b 6.95,c 6.94,d 6.96e

2 1E2g(a2u→e2u) 9.168 20.765 7.8f

2 1E1u(e1g→3p0) 7.501 20.159 7.413e same
2 1A1g(e1g→3d1) 7.984 0.010 7.807,i 7.808,j 7.819k same
1 1E2g(e1g→3d1) 7.972 0.009 7.805i same
1 1A2g(e1g→3d1) 8.009 0.006 - -

1 1E1g(e1g→3s) 6.563 20.028 6.334g same
1 1A2u(e1g→3p1) 7.092 20.008 6.932,h 6.928b,e same
1 1E2u(e1g→3p1) 7.169 20.018 6.953h same
1 1A1u(e1g→3p1) 7.262 20.024 - -
1 1B2g(e1g→3d2) 7.760 20.003 - -
1 1B1g(e1g→3d2) 7.751 20.005 - -
2 1E1g(e1g→3d0) 7.671 0.001 7.535,i 7.540j same
3 1E1g(e1g→3d2) 7.772 20.005 - -

3 1E2g(se1g→3s) 9.387 20.132 8.552,k 8.564j -
1E2g(e1g→4d1) 8.591 8.437k same
1A1g(e1g→4d1) 8.599 8.440,k 8.440,i 8.442j same
1A2g(e1g→4d1) 8.605 - -

aSee footnotes to Tables V and VI for detail on calculations. Conversion factor used in translating experimental
results in cm21 to eV is 8065.5409.
bReference 73.
cReference 63.
dReference 64.
eReference 62.
fReferences 67–68.
gReferences 65.
hReferences 66.
iReferences 69.
jReference 72.
kReference 71.
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2. Rydberg states

We consider in this study mainly the first members~n
53! of the Rydberg series, which converges to the first ion-
ization potential of 9.246 eV.70 Since the pioneering work of
Price and Wood61 and Wilkinson62 many experimental stud-
ies of the Rydberg states of benzene have been reported.
Only few transitions are dipole-allowed but many states have
been observed in multiphoton ionization~MPI! spectroscopy.
Jahn–Teller effects may complicate the assignments.

The Jahn–Teller splitting in benzene is interesting since
it contains splittings originating both from the degenerate
core and from the Rydberg electron, which may or may not
be in a degenerate orbital.79,80 Raghavachariet al.83 and
Hirao and Kato84 have calculated the Jahn–Teller stabiliza-
tion of the benzene2E1g cation to be 0.12–0.13 eV by UHF-
based geometry optimizations and subsequent MP2 and
SAC-CI energy calculations, respectively. In both cases, the
basis sets are rather small~6-31G and 4-31G! and the result-
ing energy differences cannot be expected to be accurate.
The HF stabilization was found to be 0.15 eV.83 The Jahn–
Teller effect in the Rydberg states is the same as in the ion-
core in the limit of largen. Assuming in a first approxima-
tion that this Jahn–Teller stabilization carries over to the
Rydberg states of benzene, the vertical excitations energies
should be 0.1 to 0.15 eV too high. Preliminary calculations
were carried out using the Jahn–Teller split benzene-cation
2B2g 6-31G UHF geometry of Ref. 83 in a CCSD aug-
pVDZ-CM2 excitation-energy calculation. We obtain a shift
between the vertical excitation energies and the excitation
from the ground-state equilibrium geometry to the point on
the adiabatic Rydberg excited state surfaces of order 0.10
60.03 eV for all Rydberg states~again with the 11E1u as the
exception!. The same shift was observed for then53 and
n54 ~d1! Rydberg states indicating the common origin of
this shift in the cation core. Again these estimates are rather
crude, however an order of magnitude is obtained.

In the following, we shall restrict our comparisons to
listing the experimental 0-0 transitions and comparing these
with our vertical excitation energies, keeping the above esti-
mates of other effects in mind. A detailed analysis of Jahn–
Teller effects is left for future investigations. Rydberg states
higher thann53 are generally not treated in this study but
are discussed briefly in a separate section. The first state of
E2g symmetry originating from the Rydberg series converg-
ing to the second ionization potential is also briefly discussed
in a separate section.

a. 3s Rydberg states:The 11E1g Rydberg state was
first observed by Johnson as a two-photon resonance in the
three-photon ionization region of benzene with origin at
6.334 eV, and with a band structure in the region 6.3 to 6.6
eV.65 At the time of the experiment it was not clear whether
this state should be assigned as the1E2g valence or as a
Rydberg (3s)1E1g state. It has later been ruled out that this
state is the valence1E2g state.

67,68,85This assignment is sup-
ported by our calculations as well as those of others. Our
vertical excitation energy is 0.2 eV larger than the experi-
mental origin.

b. 3p Rydberg states:The excitation of an electron to a
degenerate 3p1 ~px.y or 3ps.! orbital gives rise to

1A1u,
1A2u,

and 1E2u states. The 11A2u(3p1) Rydberg state is dipole-
allowed and has been observed in several spectra since the
pioneering work of Wilkinson~6.928 eV~O!!.62 Johnson and
Korenowski obtain the origin at 6.932 eV in their three-
photon MPI experiment.66 In their three-photon spectrum,
Johnson and Korenowski also identified the 11E2u(3p1) Ry-
dberg state with origin at 6.953 eV. The third 3ps Rydberg
state, 11A1u, has to our knowledge not been observed. The
assignment of vibronic structure of these transitions has been
somewhat controversial and a correct explanation requires
consideration of the Jahn–Teller effect.79,80

Since the triples effects are small for the Rydberg states,
we expect the discrepancies between the calculated results
and the experimental 0-0 transitions to arise from Jahn–
Teller and vibrational effects. Thus, these corrections are in
the range 0.1 to 0.2 eV in agreement with the estimates dis-
cussed previously. The order of the states is predicted in the
CC vertical energy calculations to be1A2u,

1E2u, and
1A1u.

This order agrees with the above cited experimental 0-0 tran-
sition where the1A2u is below the1E2u state. Earlier results
had a reversed ordering, see Ref. 80 for a discussion.
Whetten and Grant have in their analysis of Jahn–Teller ef-
fects assumed that the1A2u and 1A1u states are at similar
energies and below1E2u, which is in contrast with our
results.80 In the recent work of Staib and Domcke on the
Jahn–Teller effects in benzene,79 the ordering of states is the
same as ours. Allab initio investigations in Table VII agree
on this matter.

The 3pp Rydberg state is the dipole-allowed 11E1u
state. Wilkinson observed this state with an origin at 7.413
eV.62 This is the most intense 0-0 transition. As already
noted, this state behaves differently from the other Rydberg
states—the triples corrections are larger and the basis effects
different. Just as the valence1E1u state at 7.2 eV is known to
be relatively diffuse~see for example Lorentzonet al.!, this
state may have a mixed valence-Rydberg character. Further-
more, whereas our vertical excitation energies for the Ryd-
berg states usually lie between 0.1 and 0.2 eV above the
spectroscopic 0-0 transitions, this is not the case for this state
~including triples corrections!. This agrees with our prelimi-
nary calculations on Jahn–Teller effects described above
where no Jahn–Teller stabilization was found for this state in
contrast to the other Rydberg states.

c. 3d Rydberg states:The Rydbergd orbitals inD6h
contributes to orbitals ofa1g, e1g, ande2g symmetries. Ex-
citing ane1g electron into the 3d1 ~or 3dxz,yz or 3dp! orbitals
gives rise to states of symmetries1A1g,

1A2g and
1E2g. The

excitation into 3d0 ~or 3ds! gives a state of1E1g symmetry,
and excitation to 3d2 ~or 3dd! gives rise to states of1B1g,
1B2g and

1E1g symmetry. States of
1A1g,

1E1g and
1E2g sym-

metry are two-photon allowed.
Whetten, Fu, and Grant observed the first member of a

gerade Rydberg series with origin at 7.807 eV.69 In polarized
two-photon spectroscopy, Whettenet al. observed bothE
andA symmetry states with origins at 7.805 and 7.807 eV,
respectively. Grubbet al. reports an origin at 7.819 eV, and
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argues that contributions from three-photon1B1u intermedi-
ates may be present in the four-photon spectrum. Thus, the
most reliable assignment probably is the1E2g(3d1) origin at
7.805 eV and the1A1g(3d1) origin at 7.807 eV. Our vertical
excitation energies are about 0.18 eV higher than these.

Whetten, Fu and Grant observed an origin at 7.535 eV in
two-photon spectroscopy.69 It was suggested that the band
should be assigned as the valence1E2g state. It was later
ruled out that this was the valence1E2g state, and the energy
fits well with either the1E1g(3ds) or the

1E1g(3dd) Rydberg
states. Grubbet al.observe a state with origin at 7.540 eV in
four-photon resonant five-photon ionization spectroscopy.72

The authors argue—by analysis of the polarization behavior
and quantum defects in relations to higher Rydberg states—
that this peak corresponds to the 3d0 Rydberg state. We find
some support of this in our calculations. Assigning the 7.54
eV peak to 21E1g(3ds), we obtain a discrepancy of 0.13
eV—that is, of the same magnitude as for most of the Ryd-
berg states. If instead we interpret this peak as the
3 1E1g(3dd) state—as done in several theoretical
studies—we find a relatively large deviation of 0.23 eV.

Accepting this assignment, we find that transitions to the
3dd Rydberg states have not been observed directly. Transi-
tions to the1B1g and

1B2g states are first allowed in four-
photon transitions from the ground state. However, the
higher-order components of these states have presumably
been observed in the investigations of Grubbet al. as the
so-calledRg~0.24! Rydberg series. Using the empirically de-
termined quantum defect, then53 member of this series is
extrapolated to appear at about 7.449 eV. Grubbet al. thus
propose this as a common estimate of the origin. Grubbet al.
emphasize that a similar extrapolation of the 3s Rydberg
state from a quantum-defect fit to the higher Rydberg mem-
bers, overestimates the observed value by 0.18 eV. We find
that our results for the1B1g,

1B2g and 31E1g 3dd states are
very similar, but 0.3 eV above the estimated value. It is
plausible that we should have a discrepancy of this magni-
tude due to the addition of the usual 0.15 eV and an error in
the estimate of same magnitude, although the error of the
estimate is of opposite sign relative to the above cited.

d. 4d1 Rydberg states:Higher Rydberg states can be
observed in many spectra. In particular, for the allowed
p-type Rydberg series there are many results. Most of the
information for thegeradestates comes from the extensive
studies by Whetten and Grubb and co-workers.69–72Our pur-
pose is not to follow every Rydberg series to the limit, so we
shall consider only then54 components of the 4d1 series.
Origins are observed at 8.437 eV~1E2g! and 8.440 eV
~1A1g!. As for the n53 series we find that our calculated
vertical excitation energies are about 0.15 eV higher than the
experimental origins. The similarities in the deviations be-
tween our calculated vertical excitation energies and the ob-
served origin forn53 andn54 Rydberg states strongly in-
dicate a common explanation. In other words, the description
of the ion core is responsibly for the 0.15 eV discrepancy. As
noted in the beginning of the Rydberg section, this may well
be due to Jahn–Teller effects, which are calculated to be of
that order of magnitude.

e. (3s)E2g state: Whetten et al. observe a structure
with origin at 8.552 eV,71 and similarly Grubbet al. find an
origin at 8.564 eV.72 Whetten, Grubb, and coworkers pro-
pose that this is the first member of a series converging to the
first excited ionic state2E2g. This assignment is based on
resemblances between the vibronic structures of the2E2g
photoelectron system and the vibronic structure of the Ryd-
berg state. These values do not fit well with our vertical
CCSD excitation energies of 9.38 eV. The effect of triples is
slightly larger than for the other Rydberg states but only
20.13 eV. It is difficult to believe that our vertical excitation
energies are wrong by 0.8 eV for this state. We conclude that
either large geometrical effects are involved in this transition
or that the assignment is incorrect.

IV. CONCLUDING REMARKS

A long-standing goal of molecular quantum chemistry is
to be able to carry out calculations that are accurate enough
to explain and predict spectroscopic properties. In order to
reach this goal, we must develop useful methods that allow
us to estimate the accuracy of the theoretical calculations. In
particular, we must be able to carry out systematic investi-
gations of the accuracy with respect to the two basic approxi-
mations made in the solution of the electronic problem—the
use of finite one-electron basis sets and the use of approxi-
mateN-electron models. In direct comparison with experi-
ment, other effects must also be taken into account. For elec-
tronic spectra, geometrical and vibrational effects for the
ground and excited states are particularly important. Calcu-
lations of oscillator strengths, vibrational frequencies of the
ground and excited states, adiabatic transitions and so on are
required for a more complete and useful comparison with
experiment. However, before embarking on such an enter-
prise, it is important to address the fundamental theoretical
requirements for obtaining an accurate electronic description
of transition properties.

Recently, we have proposed a hierarchy of coupled clus-
ter models and thoroughly tested their performance with en-
couraging results. In this paper, we have demonstrated how
these models may be used in integral-direct calculations in
large basis sets for calculation of excitation energies. The
combination of integral-direct techniques with a hierarchy of
coupled cluster models constitutes a very powerful tool for
systematically addressing the fundamental requirement for
accurate calculations of excitation energies. We have in this
paper and in our previous paper on CC2 excitation energies
systematically investigated basis-set and correlation effects
in calculations of the vertical electronic excitation energies
of benzene. We have investigated the basis-set convergence
carefully by carrying out calculations with up to 432 basis
functions. We have shown that to obtain an accuracy better
than 0.2 eV in CC2 and CCSD, polarized triple-zeta basis
sets are required for the Rydberg excitations in addition to
diffuse functions. The inclusion of triple excitations using
CC3 and CCSDR~3! leads to even more accurate results and
also provides us with an indication of the importance of
higher excitations. In this study, we have found that triples—
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with one notable exception—give rather small corrections
and conclude that the CCSD and CC3 results for these states
are highly accurate. For these states, we may therefore as-
sume that we have solved the electronic problem to a high
accuracy relative to the remaining geometrical and vibra-
tional corrections.

Only systematic investigations can support us in our
conjecture that the remaining discrepancies with respect to
experimental results is not due to errors in our approach for
solving the electronic problem but to a large extent due to
effects not treated in this study. Treating other than the elec-
tronic degrees of freedom in detail is beyond the scope of
this investigation as it has been for previous theoretical in-
vestigations on benzene. Work is underway for taking geo-
metrical and vibrational effects for both ground and excited
states into account along the lines of Stanton and Gauss.90,91

Previous theoretical studies have to a large extent comprised
significant errors with respect to both basis set and correla-
tion as well as geometrical and vibrational effects is not
taken into account. In many cases cancellation of errors and
neglect of physical effects leads to fortuitous good agree-
ment between calculated vertical excitation energies and ex-
perimental results. In our study we see very clearly the limi-
tations of calculating only vertical excitation energies. It
should also be emphasized that all effects~electron correla-
tion, basis set, geometry relaxation, vibration etc.! may be
larger in many other systems. Thus a proper theoretical de-
scription of all these effects are needed for complete descrip-
tion of electronic spectra.

Taking CC3 as a good approximation to the exact result
within a given orbital basis for states with at1 weight larger
than 90%, we find that many popular theoretical approaches
may easily contain errors in the benzene excitation energies
of 0.2 to 0.3 eV or even larger. On the other hand, for states
such as 21E2g, the coupled cluster based methods certainly
have their own problems. In our opinion, it is difficult to
claim an accuracy better than 0.3 to 0.5 eV for methods such
as CC2, SOPPA, and CASPT2 in a polarized double-zeta
basis augmented with diffuse functions. To go beyond this
level of accuracy, many effects must be considered. For
more accurate calculations, it is necessary to use more accu-
rateN-electron wave functions and larger one-electron basis
sets as done in this paper.

We would like to emphasize that for systematic and re-
liable studies of molecular electronic spectra and also for a
meaningful comparison with experiment, high accuracy is
required in the wave functions. We must have at our disposal
some means of investigating the accuracy of our calculations
both with respect to the truncations in the one-electron basis
sets and with respect to the approximations in theN-electron
space. We achieve this goal through the twin adoption of the
hierarchy of correlation-consistent basis sets and the hierar-
chy of coupled cluster wave functions. In addition to dem-
onstrating the feasibility of such large-scale coupled cluster
calculations for excitation energies, we have shown that high
accuracy and systematic calculations are of crucial impor-
tance in order to distinguish between real physical effects
and errors arising from approximations made in the one- and

N-particle spaces. Presently our methods is unrivalled by any
otherab initio method in both accuracy and reliability. We
therefore believe that the methods used in this paper provides
valuable tools for reliable assignment of spectra for large
molecules.
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