151 research outputs found

    A pilot study on the kinetics of metabolites and microvascular cutaneous effects of nitric oxide inhalation in healthy volunteers

    Get PDF
    RATIONALE: Inhaled nitric oxide (NO) exerts a variety of effects through metabolites and these play an important role in regulation of hemodynamics in the body. A detailed investigation into the generation of these metabolites has been overlooked. OBJECTIVES: We investigated the kinetics of nitrite and S-nitrosothiol-hemoglobin (SNO-Hb) in plasma derived from inhaled NO subjects and how this modifies the cutaneous microvascular response. FINDINGS: We enrolled 15 healthy volunteers. Plasma nitrite levels at baseline and during NO inhalation (15 minutes at 40 ppm) were 102 (86-118) and 114 (87-129) nM, respectively. The nitrite peak occurred at 5 minutes of discontinuing NO (131 (104-170) nM). Plasma nitrate levels were not significantly different during the study. SNO-Hb molar ratio levels at baseline and during NO inhalation were 4.7E-3 (2.5E-3-5.8E-3) and 7.8E-3 (4.1E-3-13.0E-3), respectively. Levels of SNO-Hb continued to climb up to the last study time point (30 min: 10.6E-3 (5.3E-3-15.5E-3)). The response to acetylcholine iontophoresis both before and during NO inhalation was inversely associated with the SNO-Hb level (r: -0.57, p = 0.03, and r: -0.54, p = 0.04, respectively). CONCLUSIONS: Both nitrite and SNO-Hb increase during NO inhalation. Nitrite increases first, followed by a more sustained increase in Hb-SNO. Nitrite and Hb-SNO could be a mobile reservoir of NO with potential implications on the systemic microvasculature

    Measurement of charged-particle multiplicities in gluon and quark jets in p(p)over-bar collisions at root s=1.8 TeV

    Get PDF
    We report the first largely model independent measurement of charged particle multiplicities in quark and gluon jets, N-q and N-g, produced at the Fermilab Tevatron in p (p) over bar collisions with a center-of-mass energy of 1.8 TeV and recorded by the Collider Detector at Fermilab. The measurements are made for jets with average energies of 41 and 53 GeV by counting charged particle tracks in cones with opening angles of θ(c)=0.28, 0.36, and 0.47 rad around the jet axis. The corresponding jet hardness Q=E-jetθ(c) varies in the range from 12 to 25 GeV. At Q=19.2 GeV, the ratio of multiplicities r=N-g/N-q is found to be 1.64± 0.17, where statistical and systematic uncertainties are added in quadrature. The results are in agreement with resummed perturbative QCD calculations

    Biomarkers, metabonomics, and drug development: Can inborn errors of metabolism help in understanding drug toxicity?

    No full text
    Application of “omics” technology during drug discovery and development is rapidly evolving. This review evaluates the current status and future role of “metabonomics” as a tool in the drug development process to reduce the safety-related attrition rates and bridge the gaps between preclinical and clinical, and clinical and market. Particularly, the review looks at the knowledge gap between the pharmaceutical industry and pediatric hospitals, where metabonomics has been successfully applied to screen and treat newborn babies with inborn errors of metabolism. An attempt has been made to relate the clinical pathology associated with inborn errors of metabolism with those of drug-induced pathology. It is proposed that extending the metabonomic biomarkers used in pediatric hospitals, as “advanced clinical chemistry” for preclinical and clinical drug development, is immediately warranted for better safety assessment of drug candidates. The latest advances in mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy should help replace the traditional approaches of laboratory clinical chemistry and move the safety evaluation of drug candidates into the new millennium
    corecore