2,951 research outputs found

    Mixed phases of color superconducting quark matter

    Get PDF
    We examine electrically and color neutral quark matter in beta-equilibrium focusing on the possibility of mixed phases between different color superconducting phases. To that end we apply the Gibbs criterion to ensure phase equilibrium and discuss the external conditions under which these mixed phases can occur. Neglecting surface and Coulomb effects we find a rich structure of different mixed phases with up to four components, including 2SC and CFL matter as well as more ``exotic'' components, like a phase with us- and ds-pairing but without ud-pairing. Preliminary estimates indicate, however, that the mixed phases become unstable if surface and Coulomb effects are included.Comment: 22 pages, 9 figures, v2: minor changes in the text, version to appear in Nucl. Phys.

    Improving the staggered quark action to reduce flavour symmetry violations

    Get PDF
    We investigate a class of actions for lattice QCD with staggered quarks aimed at reducing the flavour symmetry violations associated with using staggered fermions. These actions replace the gauge field link fields in the quark action with covariantly smeared fields. As such they are an extension of actions considered by the MILC collaboration. We show that such actions systematically reduce flavour symmetry violations in the weak coupling limit. Using the mass splitting between Goldstone and non-Goldstone pions as a measure of flavour symmetry violations we find that these actions have considerably less flavour symmetry violations than the standard staggered action, and represent an improvement on what can be achieved with the MILC action, on quenched configurations with β=5.7\beta=5.7.Comment: 3 pages, Latex using espcrc2.sty. 1 coloured postscript figure included with epsffile. Talk presented by D.K.Sinclair at LATTICE'97, Edinburgh, Scotlan

    Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds

    Get PDF
    <p>A series of Ba<sub>1-x-y</sub>Sr<sub>x</sub>Ca<sub>y</sub>TiO<sub>3</sub> compounds were prepared with varying average ionic radii and cation disorder on A-site. All samples showed typical ferroelectric behavior. A simple empirical equation correlated Curie temperature, <em>T<sub>C</sub></em>, with the values of ionic radii of A-site cations. This correlation was related to the distortion of TiO<sub>6</sub> octahedra observed during neutron diffraction studies. The equation was used for the selection of compounds with predetermined values of <em>T<sub>C</sub></em>. The effects of A-site ionic radii on the temperatures of phase transitions in Ba<sub>1-x-y</sub>Sr<sub>x</sub>Ca<sub>y</sub>TiO<sub>3</sub> were discussed. </p

    Quark mass effects on the stability of hybrid stars

    Get PDF
    We perform a study of the possible existence of hybrid stars with color superconducting quark cores using a specific hadronic model in a combination with an NJL-type quark model. It is shown that the constituent mass of the non-strange quarks in vacuum is a very important parameter that controls the beginning of the hadron-quark phase transition. At relatively small values of the mass, the first quark phase that appears is the two-flavor color superconducting (2SC) phase which, at larger densities, is replaced by the color-flavor locked (CFL) phase. At large values of the mass, on the other hand, the phase transition goes from the hadronic phase directly into the CFL phase avoiding the 2SC phase. It appears, however, that the only stable hybrid stars obtained are those with the 2SC quark cores.Comment: 12 pages, 7 eps figures; v2: figures and table modified after correction of a minor numerical mistake, discussion clarified, references added, conclusions unchanged; version to appear in PL

    Anyons in discrete gauge theories with Chern-Simons terms

    Full text link
    We study the effect of a Chern-Simons term in a theory with discrete gauge group H, which in (2+1)-dimensional space time describes (non-abelian) anyons. As in a previous paper, we emphasize the underlying algebraic structure, namely the Hopf algebra D(H). We argue on physical grounds that the addition of a Chern-Simons term in the action leads to a non-trivial 3-cocycle on D(H). Accordingly, the physically inequivalent models are labelled by the elements of the cohomology group H^3(H,U(1)). It depends periodically on the coefficient of the Chern-Simons term which model is realized. This establishes a relation with the discrete topological field theories of Dijkgraaf and Witten. Some representative examples are worked out explicitly.Comment: 18 page

    Self-consistent parametrization of the two-flavor isotropic color-superconducting ground state

    Get PDF
    Lack of Lorentz invariance of QCD at finite quark chemical potential in general implies the need of Lorentz non-invariant condensates for the self-consistent description of the color-superconducting ground state. Moreover, the spontaneous breakdown of color SU(3) in this state naturally leads to the existence of SU(3) non-invariant non-superconducting expectation values. We illustrate these observations by analyzing the properties of an effective 2-flavor Nambu-Jona-Lasinio type Lagrangian and discuss the possibility of color-superconducting states with effectively gapless fermionic excitations. It turns out that the effect of condensates so far neglected can yield new interesting phenomena.Comment: 16 pages, 3 figure

    Neutron stars and the transition to color-superconducting quark matter

    Full text link
    We explore the relevance of color superconductivity inside a possible quark matter core for the bulk properties of neutron stars. For the quark phase we use an Nambu--Jona-Lasinio (NJL) type model, extended to include diquark condensates. For the hadronic phase, a microscopic many-body model is adopted, with and without strangeness content. In our calculations, a sharp boundary is assumed between the hadronic and the quark phases. For NJL model parameters fitted to vacuum properties we find that no star with a pure quark core does exist. Nevertheless the presence of color superconducting phases can lower the neutron star maximum mass substantially. In some cases, the transition to quark matter occurs only if color superconductivity is present. Once the quark phase is introduced, the value of the maximum mass stays in any case below the value of two solar masses.Comment: 11 pages, 3 figures, v2: minor corrections in the text, layout of the figures improved, references added, v3: transition densities from hadronic to quark matter added, version accepted for publication in PL

    Quark matter in compact stars?

    Full text link
    Ozel, in a recent reanalysis of EXO 0748-676 observational data (astro-ph/0605106), concluded that quark matter probably does not exist in the center of compact stars. We show that the data is actually consistent with the presence of quark matter in compact stars.Comment: 4 pages, LaTeX; New title and overall rewrite to reflect version published in Nature. Conclusions unchange

    SO(10) Cosmic Strings and SU(3) Color Cheshire Charge

    Full text link
    Certain cosmic strings that occur in GUT models such as SO(10)SO(10) can carry a magnetic flux which acts nontrivially on objects carrying SU(3)colorSU(3)_{color} quantum numbers. We show that such strings are non-Abelian Alice strings carrying nonlocalizable colored ``Cheshire" charge. We examine claims made in the literature that SO(10)SO(10) strings can have a long-range, topological Aharonov-Bohm interaction that turns quarks into leptons, and observe that such a process is impossible. We also discuss flux-flux scattering using a multi-sheeted formalism.Comment: 37 Pages, 8 Figures (available upon request) phyzzx, iassns-hep-93-6, itp-sb-93-6

    Color Superconductivity in Asymmetric Matter

    Get PDF
    The influence of different chemical potential for different flavors on color superconductivity is analyzed. It is found that there is a first order transition as the asymmetry grows. This transition proceeds through the formation of bubbles of low density, flavor asymmetric normal phase inside a high density, superconducting phase with a gap {\it larger} than the one found in the symmetric case. For small fixed asymmetries the system is normal at low densities and superconducting only above some critical density. For larger asymmetries the two massless quarks system stays in the mixed state for arbitrarily high densities.Comment: 8 pages, 2 figure
    • …
    corecore