25 research outputs found

    Condensados Biomoleculares: Organizadores de la Vida

    Get PDF
    Life never fails to surprise us. Today, it does so with membrane-less organelles known as biomolecular condensates. These structures arise from a phenomenon of biomolecular self-organization capable of generating localized microenvironments with defined functions within the cell. In recent years, the significance of condensates in various aspects of cellular biology has been  unveiled, including the regulation  of gene expression, protein synthesis, cellular signaling control, cytoskeletal protein polymerization, and the formation of aggregates associated with neurodegenerative diseases, among many others yet to be discovered. These findings are revolutionizing our current understanding of cellular processes and providing new insights into cell process regulation. Condensates unveil previously unknown cellular mechanisms, more stochastic, that are shifting away from the dominance of genetic mechanisms in favor of cellular self-organization processes. The advancement in comprehending biomolecular condensates paves the way for exciting avenues of research in cellular and molecular biology, enabling the reinterpretation of processes that relate the genotype to the phenotype. Offering, in this way, the potential to better understand diseases and develop more effective therapeutic approaches in the future.La vida nunca deja de sorprendernos. Hoy lo hace con unos orgánulos libres de membrana conocidos como condensados biomoleculares. Éstos, son el resultado de un fenómeno de autoorganización de biomoléculas capaz de crear auténticos microentornos con funciones definidas en el interior de la célula. En los últimos años, se ha descubierto que los condensados desempeñan un papel relevante en diversos aspectos de la biología celular, como la regulación de la expresión génica, la síntesis de proteínas, el control de la señalización celular, la polimerización de proteínas del citoesqueleto o la formación de agregados asociados a enfermedades neurodegenerativas, entre muchas otras aún por descubrir. Estos hallazgos están desafiando nuestra comprensión actual de los procesos celulares y ofrecen nuevas maneras de entender el funcionamiento interno de las células. Los condensados muestran mecanismos celulares previamente desconocidos, mucho más estocásticos y que diluyen la preponderancia del mecanicismo genético en favor de los procesos de autoorganización celular. El avance en la comprensión de los condensados biomoleculares abre emocionantes vías de investigación en biología celular y molecular y permiten la reinterpretación de los procesos que relacionan el genotipo y el fenotipo, ofreciendo así la posibilidad de comprender mejor las enfermedades y desarrollar enfoques terapéuticos más efectivos en el futuro

    A surgical model of short bowel syndrome induces a long-lasting increase in pancreatic beta-cell mass

    Get PDF
    Several surgical techniques are used nowadays as a severe treatment for obesity and diabetes mellitus type 2. These techniques are aggressive due to drastic changes in the nutrient flow and non-reversible modifications on the digestive tube. In this paper we present the effects of a massive intestinal resection on the pancreas. Results have shown that short bowel technique is less aggressive to normal anatomy and physiology of the intestinal tract than Gastric bypass or biliopancreatic diversion (e.g.). In this paper we reproduce a model of short bowel syndrome (SIC), with similar surgical conditions and clinical complications as seen in human cases. This work was conducted on normal Wistar rats, with no other concurrent factors, in order to determine the effects on normal pancreas islets. We measured pancreatic implications by histomorphometric studies, which included beta-cell mass by immunocytochemistry, and apoptosis/proliferation test with TUNEL technique and Ki-67. Briefly, we reported on an increased relative area of the islets of the pancreas, as well as an increase in the average size of islets in the SIC versus the control group. Furthermore we stated that this increase in size of the pancreatic islets is due to the mechanisms of proliferation of beta cells in animals undergoing SIC. These goals could reveal a direct influence of surgical modification of the digestive tract over the pancreatic beta cell homeostasis. In this sense, there are many potential stimulators of intestinal adaptation, including peptide hormones and growth components which are associated or involved as effectors of the endocrine pancreas

    Metal Homeostasis and Exposure in Distinct Phenotypic Subtypes of Insulin Resistance among Children with Obesity

    Get PDF
    Background: Trace elements and heavy metals have proven pivotal roles in childhood obesity and insulin resistance. However, growing evidence suggests that insulin resistance could encompass distinct phenotypic subtypes. Methods: Herein, we performed a comprehensive metallomics characterization of plasma samples from children and adolescents with obesity and concomitant insulin resistance, who were stratified as early (N = 17, 11.4 ± 2.4 years), middle (N = 16, 11.8 ± 1.9 years), and late (N = 33, 11.7 ± 2.0 years) responders according to the insulin secretion profile in response to an oral glucose tolerance test. To this end, we employed a high-throughput method aimed at determining the biodistribution of various essential and toxic elements by analyzing total metal contents, metal-containing proteins, and labile metal species. Results: Compared with the early responders, participants with delayed glucose-induced hyperinsulinemia showed a worsened insulin resistance (HOMA-IR, 4.5 vs. 3.8) and lipid profile (total cholesterol, 160 vs. 144 mg/dL; LDL-cholesterol, 99 vs. 82 mg/dL), which in turn was accompanied by sharpened disturbances in the levels of plasmatic proteins containing chromium (4.8 vs. 5.1 µg/L), cobalt (0.79 vs. 1.2 µg/L), lead (0.021 vs. 0.025 µg/L), and arsenic (0.077 vs. 0.17 µg/L). A correlation analysis demonstrated a close inter-relationship among these multielemental perturbations and the characteristic metabolic complications occurring in childhood obesity, namely impaired insulin-mediated metabolism of carbohydrates and lipids. Conclusions: These findings highlight the crucial involvement that altered metal homeostasis and exposure may have in regulating insulin signaling, glucose metabolism, and dyslipidemia in childhood obesity.This research was funded by the Spanish Government through Instituto de Salud Carlos III (PI22/01899). AGD is supported by an intramural grant from the Biomedical Research and Innovation Institute of Cádiz (LII19/16IN-CO24), and RGD is a recipient of a “Miguel Servet” fellowship (CP21/00120) funded by Instituto de Salud Carlos III

    Exploring the association between circulating trace elements, metabolic risk factors, and the adherence to a Mediterranean diet among children and adolescents with obesity

    Get PDF
    Diet is one of the most important modifiable lifestyle factors for preventing and treating obesity. In this respect, the Mediterranean diet (MD) has proven to be a rich source of a myriad of micronutrients with positive repercussions on human health. Herein, we studied an observational cohort of children and adolescents with obesity (N = 26) to explore the association between circulating blood trace elements and the degree of MD adherence, as assessed through the KIDMED questionnaire. Participants with higher MD adherence showed better glycemic/insulinemic control and a healthier lipid profile, as well as raised plasma levels of selenium, zinc, cobalt, molybdenum, and arsenic, and increased erythroid content of selenium. Interestingly, we found that these MD-related mineral alterations were closely correlated with the characteristic metabolic complications behind childhood obesity, namely hyperglycemia, hyperinsulinemia, and dyslipidemia (p 0.35). These findings highlight the pivotal role that dietary trace elements may play in the pathogenesis of obesity and related disorders.This research was partially funded by the Spanish Government through Instituto de Salud Carlos III- (PI22/01899). ÁG-D was supported by an intramural grant from the Biomedical Research and Innovation Institute of Cádiz (LII19/16INCO24), and RG-D was recipient of a “Miguel Servet” fellowship (CP21/00120) funded by Instituto de Salud Carlos III

    Sexually dimorphic metal alterations in childhood obesity are modulated by a complex interplay between inflammation, insulin, and sex hormones

    Get PDF
    Although growing evidence points to a pivotal role of perturbed metal homeostasis in childhood obesity, sexual dimorphisms in this association have rarely been investigated. In this study, we applied multi-elemental analysis to plasma and erythrocyte samples from an observational cohort comprising children with obesity, with and without insulin resistance, and healthy control children. Furthermore, a wide number of variables related to carbohydrate and lipid metabolism, inflammation, and sex hormones were also determined. Children with obesity, regardless of sex and insulin resistance status, showed increased plasma copper-to-zinc ratios. More interestingly, obesity-related erythroid alterations were found to be sex-dependent, with increased contents of iron, zinc, and copper being exclusively detected among female subjects. Our findings suggest that a sexually dimorphic hormonal dysregulation in response to a pathological cascade involving inflammatory processes and hyperinsulinemia could be the main trigger of this female-specific intracellular sequestration of trace elements. Therefore, the present study highlights the relevance of genotypic sex as a susceptibility factor influencing the pathogenic events behind childhood obesity, thereby opening the door to develop sex-personalized approaches in the context of precision medicine.INiBICA, Grant/Award Number: LII19/16IN-CO24; Instituto de Salud Carlos III, Grant/Award Numbers: CP21/00120, PI22/0189

    Altered Metal Homeostasis Associates with Inflammation, Oxidative Stress, Impaired Glucose Metabolism, and Dyslipidemia in the Crosstalk between Childhood Obesity and Insulin Resistance

    Get PDF
    Metals are redox-active substances that participate in central biological processes and may be involved in a multitude of pathogenic events. However, considering the inconsistencies reported in the literature, further research is crucial to disentangle the role of metal homeostasis in childhood obesity and comorbidities using well-characterized cohorts and state-of-the-art analytical methods. To this end, we studied an observational population comprising childrenwith obesity and insulin resistance, children with obesity without insulin resistance, and healthy control children. A multi-elemental approach based on the size-fractionation of metal species was applied to quantify the total content of various essential and toxic elements in plasma and erythrocyte samples, and to simultaneously investigate the metal fractions conforming the metalloproteome and the labile metal pool. The most important disturbances in childhood obesity were found to be related to elevated circulating copper levels, decreased content of plasmatic proteins containing chromium, cobalt, iron, manganese, molybdenum, selenium, and zinc, as well as the sequestration of copper, iron, and selenium within erythrocytes. Interestingly, these metal disturbances were normally exacerbated among children with concomitant insulin resistance, and in turn were associated to other characteristic pathogenic events, such as inflammation, oxidative stress, abnormal glucose metabolism, and dyslipidemia. Therefore, this study represents one-step further towards a better understanding of the involvement of metals in the crosstalk between childhood obesity and insulin resistance.This research was partially funded by the Spanish Government through Instituto de Salud Carlos III (CP21/00120, PI18/01316). Á.G.-D. is supported by an intramural grant from the Biomedical Research and Innovation Institute of Cádiz (LII19/16IN-CO24), and R.G.-D. is recipient of a “Miguel Servet” fellowship (CP21/00120) funded by Instituto de Salud Carlos III

    Trace elements as potential modulators of puberty-induced amelioration of oxidative stress and inflammation in childhood obesity

    Get PDF
    Although puberty is known to influence obesity progression, the molecular mechanisms underlying the role of sexual maturation in obesity-related complications remains largely unexplored. Here, we delve into the impact of puberty on the most relevant pathogenic hallmarks of obesity, namely oxidative stress and inflammation, and their association with trace element blood status. To this end, we studied a well-characterized observational cohort comprising prepubertal (N = 46) and pubertal (N = 48) children with obesity. From all participants, plasma and erythrocyte samples were collected and subjected to metallomics analysis and determination of classical biomarkers of oxidative stress and inflammation. Besides the expected raise of sexual hormones, pubertal children displayed better inflammatory and oxidative control, as reflected by lower levels of C-reactive protein and oxidative damage markers, as well as improved antioxidant defense. This was in turn accompanied by a healthier multielemental profile, with increased levels of essential elements involved in the antioxidant system and metabolic control (metalloproteins containing zinc, molybdenum, selenium, and manganese) and decreased content of potentially deleterious species (total copper, labile free iron). Therefore, our findings suggest that children with obesity have an exacerbated inflammatory and oxidative damage at early ages, which could be ameliorated during pubertal development by the action of trace element-mediated buffering mechanisms.This research was funded by the Spanish Government through Instituto de Salud Carlos III (PI22/01899, PI18/01316). Állvaro González-Domínguez is supported by an intramural grant from the Biomedical Research and Innovation Institute of Cádiz (LII19/16IN-CO24), and Raúl González-Domínguez is recipient of a “Miguel Servet” fellowship funded by Instituto de Salud Carlos III (CP21/00120)

    Mechanistic Insights into Alzheimer’s Disease Unveiled through the Investigation of Disturbances in Central Metabolites and Metabolic Pathways

    Get PDF
    Hydrophilic metabolites are closely involved in multiple primary metabolic pathways and, consequently, play an essential role in the onset and progression of multifactorial human disorders, such as Alzheimer's disease. This review article provides a comprehensive revision of the literature published on the use of mass spectrometry-based metabolomics platforms for approaching the central metabolome in Alzheimer's disease research, including direct mass spectrometry, gas chromatography-mass spectrometry, hydrophilic interaction liquid chromatography-mass spectrometry, and capillary electrophoresis-mass spectrometry. Overall, mounting evidence points to profound disturbances that affect a multitude of central metabolic pathways, such as the energy-related metabolism, the urea cycle, the homeostasis of amino acids, fatty acids and nucleotides, neurotransmission, and others

    Placental Adaptive Changes to Protect Function and Decrease Oxidative Damage in Metabolically Healthy Maternal Obesity

    Get PDF
    Pregnancy-related disorders, including preeclampsia and gestational diabetes, are characterized by the presence of an adverse intrauterine milieu that may ultimately result in oxidative and nitrosative stress. This scenario may trigger uncontrolled production of reactive oxygen species (ROS) such as superoxide anion (OBLACK CIRCLE-) and reactive nitrogen species (RNS) such as nitric oxide (NO), along with an inactivation of antioxidant systems, which are associated with the occurrence of relevant changes in placental function through recognized redox post-translational modifications in key proteins. The general objective of this study was to assess the impact of a maternal obesogenic enviroment on the regulation of the placental nitroso-redox balance at the end of pregnancy. We measured oxidative damage markers-thiobarbituric acid-reacting substances (TBARS) and carbonyl groups (C=O) levels; nitrosative stress markers-inducible nitric oxide synthase, nitrosothiol groups, and nitrotyrosine residues levels; and the antioxidant biomarkers-catalase and superoxide dismutase (SOD) activity and expression, and total antioxidant capacity (TAC), in full-term placental villous from both pre-pregnancy normal weight and obese women, and with absence of metabolic complications throughout gestation. The results showed a decrease in C=O and TBARS levels in obese pregnancies. Although total SOD and catalase concentrations were shown to be increased, both activities were significantly downregulated in obese pregnancies, along with total antioxidant capacity. Inducible nitric oxide sintase levels were increased in the obese group compared to the lean group, accompanied by an increase in nitrotyrosine residues levels and lower levels of nitrosothiol groups in proteins such as ERK1/2. These findings reveal a reduction in oxidative damage, accompanied by a decline in antioxidant response, and an increase via NO-mediated nitrative stress in placental tissue from metabolically healthy pregnancies with obesity. All this plausibly points to a placental adaptation of the affected antioxidant response towards a NO-induced alternative pathway, through changes in the ROS/RNS balance, in order to reduce oxidative damage and preserve placental function in pregnancy

    Mechanistic Insights into Alzheimer’s Disease Unveiled through the Investigation of Disturbances in Central Metabolites and Metabolic Pathways

    Get PDF
    Hydrophilic metabolites are closely involved in multiple primary metabolic pathways and, consequently, play an essential role in the onset and progression of multifactorial human disorders, such as Alzheimer’s disease. This review article provides a comprehensive revision of the literature published on the use of mass spectrometry-based metabolomics platforms for approaching the central metabolome in Alzheimer’s disease research, including direct mass spectrometry, gas chromatography-mass spectrometry, hydrophilic interaction liquid chromatography-mass spectrometry, and capillary electrophoresis-mass spectrometry. Overall, mounting evidence points to profound disturbances that affect a multitude of central metabolic pathways, such as the energy-related metabolism, the urea cycle, the homeostasis of amino acids, fatty acids and nucleotides, neurotransmission, and others
    corecore