10 research outputs found

    Study to Investigate the anti-inflammatory effect of Codelac® Broncho with Thymus Serpyllum (elixir) in comparison with reference drug Fenspiride (syrup) using accute carrageenan-induced paw inflammation model

    Get PDF
    Evaluation of anti-inflammatory action of Codelac® Broncho with Thymus Serpyllum (elixir) in comparison with Fenspiride was carried out on the model of acute carrageenan inflammation of the paws in rats. As a result of the study, it turned out that obtained data indicate a more pronounced anti-inflammatory activity of Codelac® Broncho with Thymus Serpyllum in comparison with Fenspiride, on the model of acute carrageenan inflammation of the paw in rat

    Effect of Drying Mode of Bacterial Biomass on the Effectiveness of Extraction and Physicochemical Properties of the Product (Polymer)

    Get PDF
    Проведено сравнительное исследование различных режимов высушивания биомассы бактерий Cupriavidus eutrophus В10646. Показано, что различные режимы оказывают влияние на выход конечного продукта (полимера) и его физико-химические свойства (молекулярно-массовые и температурные характеристики). Использование высоких температур приводит к деградации полимера и снижению его молекулярной массы. Применение сублимационной сушки позволяет получить рыхлую биомассу с довольно развитой поверхностью, что благоприятно сказывается на процессе экстракции и не приводит к изменению молекулярно-массовых характеристик полимераComparative study of different drying modes of bacterial biomass of Cupriavidus eutrophus В10646 was conducted. Different modes differently affect the yield of the product (polymer) and its physicochemical properties (molecular weight distribution and temperature characteristics). High temperatures caused the polymer degradation and decrease of its molecular weight. Using freeze drying allows to obtain friable biomass with an extended surface which is favorable for extraction process and to preserve the molecular weight characteristics of the polyme

    Hyper-Cross-Linked Polystyrene as a Stabilizing Medium for Small Metal Clusters

    No full text
    Among different polymers nanostructured cross-linked aromatics have the greatest potential as catalytic supports due to their exceptional thermal and chemical stability and preservation of the active phase morphology. This work studies the ability of hyper-cross-linked polystyrene (HPS) to stabilize small Pdn and Ptn (n = 4 or 9) clusters. Unrestricted DFT calculations were carried out for benzene (BZ) adsorption at the BP level of theory using triple-zeta basis sets. The adsorption of BZ rings (stepwise from one to four) was found to result in noticeable gain in energy and stabilization of resulting adsorption complexes. Moreover, the interaction of metal clusters with HPS micropores was also addressed. For the first time, the incorporation of small clusters in the HPS structure was shown to influences its geometry resulting in the stabilization of polymer due to its partial relaxation

    Production and Properties of Microbial Polyhydroxyalkanoates Synthesized from Hydrolysates of Jerusalem Artichoke Tubers and Vegetative Biomass

    No full text
    One of the major challenges in PHA biotechnology is optimization of biotechnological processes of the entire synthesis, mainly by using new inexpensive carbon substrates. A promising substrate for PHA synthesis may be the sugars extracted from the Jerusalem artichoke. In the present study, hydrolysates of Jerusalem artichoke (JA) tubers and vegetative biomass were produced and used as carbon substrate for PHA synthesis. The hydrolysis procedure (the combination of aqueous extraction and acid hydrolysis, process temperature and duration) influenced the content of reducing substances (RS), monosaccharide contents, and the fructose/glucose ratio. All types of hydrolysates tested as substrates for cultivation of three strains—C. necator B-10646 and R. eutropha B 5786 and B 8562—were suitable for PHA synthesis, producing different biomass concentrations and polymer contents. The most productive process, conducted in 12-L fermenters, was achieved on hydrolysates of JA tubers (X = 66.9 g/L, 82% PHA) and vegetative biomass (55.1 g/L and 62% PHA) produced by aqueous extraction of sugars at 80 °C followed by acid hydrolysis at 60 °C, using the most productive strain, C. necator B-10646. The effects of JA hydrolysates on physicochemical properties of PHAs were studied for the first time. P(3HB) specimens synthesized from the JA hydrolysates, regardless of the source (tubers or vegetative biomass), hydrolysis conditions, and PHA producing strain employed, exhibited the 100–120 °C difference between the Tmelt and Tdegr, prevailing of the crystalline phase over the amorphous one (Cx between 69 and 75%), and variations in weight average molecular weight (409–480) kDa. Supplementation of the culture medium of C. necator B-10646 grown on JA hydrolysates with potassium valerate and ε-caprolactone resulted in the synthesis of P(3HB-co-3HV) and P(3HB-co-4HB) copolymers that had decreased degrees of crystallinity and molecular weights, which influenced the porosity and surface roughness of polymer films prepared from them. The study shows that JA hydrolysates used as carbon source enabled productive synthesis of PHAs, comparable to synthesis from pure sugars. The next step is to scale up PHA synthesis from JA hydrolysates and conduct the feasibility study. The present study contributes to the solution of the critical problem of PHA biotechnology—finding widely available and inexpensive substrates

    Biodegradable Polyhydroxyalkanoates Formed by 3- and 4-Hydroxybutyrate Monomers to Produce Nanomembranes Suitable for Drug Delivery and Cell Culture

    No full text
    Biodegradable polyhydroxyalkanoates, biopolymers of microbiological origin, formed by 3- and 4-hydroxybutyrate monomers P(3HB-co-4HB), were used to obtain nanomembranes loaded with drugs as cell carriers by electrospinning. Resorbable non-woven membranes from P(3HB-co-4HB) loaded with ceftazidime, doripinem, and actovegin have been obtained. The loading of membranes with drugs differently affected the size of fibers and the structure of membranes, and in all cases increased the hydrophilicity of the surface. The release of drugs in vitro was gradual, which corresponded to the Higuchi and Korsmeyer-Peppas models. Antibiotic-loaded membranes showed antibacterial activity against S. aureus and E. coli, in which growth inhibition zones were 41.7 ± 1.1 and 38.6 ± 1.7 mm for ceftazidime and doripinem, respectively. The study of the biological activity of membranes in the NIH 3T3 mouse fibroblast culture based on the results of DAPI and FITC staining of cells, as well as the MTT test, did not reveal a negative effect despite the presence of antibiotics in them. Samples containing actovegin exhibit a stimulating effect on fibroblasts. Biodegradable polyhydroxyalkanoates formed by 3-hydroxybutyrate and 4-hydroxybutyrate monomers provide electrospinning non-woven membranes suitable for long-term delivery of drugs and cultivation of eukaryotic cells, and are promising for the treatment of wound defects complicated by infection

    New Approach to Synthesis of Tetralin via Naphthalene Hydrogenation in Supercritical Conditions Using Polymer-Stabilized Pt Nanoparticles

    No full text
    Supercritical (SC) fluid technologies are well-established methods in modern green chemical synthesis. Using SC fluids as solvents instead of traditional liquids gives benefits of higher diffusivity and lower viscosity, which allows mass transfer intensification and, thus, an increased production rate of chemical transformations. Therefore, a conjugation of heterogeneous catalysis with SC media is a large step toward a green chemistry. Tetralin (TL) is an important hydrogen donor solvent used for biomass liquefaction. In industry, TL is obtained via catalytic hydrogenation of naphthalene (NL). Herein, for the first time we have demonstrated the NL hydrogenation with close to 100% selectivity to TL at almost full conversion in the SC hexane. The observed transformation rates in SC hexane were much higher allowing process intensification. The downstream processes can be also facilitated since hexane after depressurisation can be easily separated from the reaction products via simple rectification. The TL synthesis was studied in a batch reactor at variation of reaction temperature and overall pressure. For the first time for this process, low Pt-loaded (1 wt.%) nanoparticles stabilized within hyper-cross-linked aromatic polymer (HAP) were applied. The Pt/HAP catalyst was stable under reaction conditions (250 degrees C, 6 MPa) allowing its recovery and reuse

    Effect of Drying Mode of Bacterial Biomass on the Effectiveness of Extraction and Physicochemical Properties of the Product (Polymer)

    No full text
    Проведено сравнительное исследование различных режимов высушивания биомассы бактерий Cupriavidus eutrophus В10646. Показано, что различные режимы оказывают влияние на выход конечного продукта (полимера) и его физико-химические свойства (молекулярно-массовые и температурные характеристики). Использование высоких температур приводит к деградации полимера и снижению его молекулярной массы. Применение сублимационной сушки позволяет получить рыхлую биомассу с довольно развитой поверхностью, что благоприятно сказывается на процессе экстракции и не приводит к изменению молекулярно-массовых характеристик полимераComparative study of different drying modes of bacterial biomass of Cupriavidus eutrophus В10646 was conducted. Different modes differently affect the yield of the product (polymer) and its physicochemical properties (molecular weight distribution and temperature characteristics). High temperatures caused the polymer degradation and decrease of its molecular weight. Using freeze drying allows to obtain friable biomass with an extended surface which is favorable for extraction process and to preserve the molecular weight characteristics of the polyme

    Noble Metal Nanoparticles Stabilized by Hyper-Cross-Linked Polystyrene as Effective Catalysts in Hydrogenation of Arenes

    No full text
    This work is addressing the arenes’ hydrogenation—the processes of high importance for petrochemical, chemical and pharmaceutical industries. Noble metal (Pd, Pt, Ru) nanoparticles (NPs) stabilized in hyper-cross-linked polystyrene (HPS) were shown to be active and selective catalysts in hydrogenation of a wide range of arenes (monocyclic, condensed, substituted, etc.) in a batch mode. HPS effectively stabilized metal NPs during hydrogenation in different medium (water, organic solvents) and allowed multiple catalyst reuses

    Three-Dimensional Printing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] Biodegradable Scaffolds: Properties, In Vitro and In Vivo Evaluation

    No full text
    The results of constructing 3D scaffolds from degradable poly(3-hydrosbutyrpate-co-3-hydroxyvalerate) using FDM technology and studying the structure, mechanical properties, biocompatibility in vitro, and osteoplastic properties in vivo are presented. In the process of obtaining granules, filaments, and scaffolds from the initial polymer material, a slight change in the crystallization and glass transition temperature and a noticeable decrease in molecular weight (by 40%) were registered. During the compression test, depending on the direction of load application (parallel or perpendicular to the layers of the scaffold), the 3D scaffolds had a Young’s modulus of 207.52 ± 19.12 and 241.34 ± 7.62 MPa and compressive stress tensile strength of 19.45 ± 2.10 and 22.43 ± 1.89 MPa, respectively. SEM, fluorescent staining with DAPI, and calorimetric MTT tests showed the high biological compatibility of scaffolds and active colonization by NIH 3T3 fibroblasts, which retained their metabolic activity for a long time (up to 10 days). The osteoplastic properties of the 3D scaffolds were studied in the segmental osteotomy test on a model defect in the diaphyseal zone of the femur in domestic Landrace pigs. X-ray and histological analysis confirmed the formation of fully mature bone tissue and complete restoration of the defect in 150 days of observation. The results allow us to conclude that the constructed resorbable 3D scaffolds are promising for bone grafting
    corecore