103 research outputs found

    Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs

    Get PDF
    © 2017 The Authors Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e− transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm−2 and 10 mgcm−2. Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm−2 and 262 ± 4 μWcm−2 with catalyst loading of 0.1 mgcm−2 and 10 mgcm−2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs

    High performance platinum group metal-free cathode catalysts for microbial fuel cell (MFC)

    Get PDF
    © The Author(s) 2016. The oxygen reduction reaction (ORR) at the cathode is usually the limiting step in microbial fuel cells and improvements have to be done to increase the performances and reduce the cost. For the first time, iron-based catalysts were synthesized utilizing the polymerization-pyrolysis method and tested successfully in neutral media and in working microbial fuel cells (MFCs). The catalysts were synthesized using polymerization, salt formation, mixed with iron salt and pyrolyzed at 850°C (PABA-850) and 950°C (PABA- 950) respectively. To study the kinetics, electro-activity of the catalysts was investigated using rotating ring disk electrode (RRDE). Results showed that PABA-850 had higher catalytic activity compared to that of PABA-950. Both Fe-catalysts had much better activity compared to activated carbon (AC) used as a baseline. Catalysts were then integrated into air breathing cathodes (loading 1 mg cm-2) and tested in single chamber MFC. The power peak obtained was 178 ± 3 μWcm-2 for PABA-850. Comparable power was produced from PABA-950 (173 ± 3 μWcm-2). AC power output was 131 ± 4 μWcm-2 that was roughly 40% lower compared to Fe-based catalysts. Those results demonstrated that the addition of platinum group metal free (PGM-free) catalysts increased the output of the MFCs substantially. Fe-based catalysts seem to be suitable for large-scale MFC applications

    Air Breathing Cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing Platinum Group Metal-free Catalysts

    Get PDF
    © 2017 The Authors The oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in “clean” environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showed that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307±0.001V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203±0.002V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251±2.3μWcm−2, followed by Co-AAPyr with 196±1.5μWcm−2, Ni-AAPyr with 171±3.6μWcm−2, Mn-AAPyr with 160±2.8μWcm−2and AC 129±4.2μWcm−2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm−1to 63.1 mScm−1. A maximum power density of 482±5μWcm−2was obtained with increasing solution conductivity, which is one of the highest values reported in the field

    Air breathing cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts

    Get PDF
    The oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in “clean” environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showed that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ! 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ! 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ! 2.3 mWcm"2, followed by Co-AAPyr with 196 ! 1.5 mWcm"2, Ni-AAPyr with 171 !3.6 mWcm"2, Mn-AAPyr with 160 ! 2.8 mWcm"2 and AC 129 ! 4.2 mWcm"2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm"1 to 63.1 mScm"1. A maximum power density of 482 ! 5 mWcm"2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field

    Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine

    Get PDF
    © 2019 The Authors In recent years, the microbial fuel cell (MFC) technology has drawn the attention of the scientific community due to its ability to produce clean energy and treat different types of waste at the same time. Often, expensive catalysts are required to facilitate the oxygen reduction reaction (ORR) and this hinders their large-scale commercialisation. In this work, a novel iron-based catalyst (Fe-STR) synthesised from iron salt and streptomycin as a nitrogen-rich organic precursor was chemically, morphologically and electrochemically studied. The kinetics of Fe-STR with and without being doped with carbon nanotubes (CNT) was initially screened through rotating disk electrode (RDE) analysis. Then, the catalysts were integrated into air-breathing cathodes and placed into ceramic-type MFCs continuously fed with human urine. The half-wave potential showed the following trend Fe-STR > Fe-STR-CNT ≫ AC, indicating better kinetics towards ORR in the case of Fe-STR. In terms of MFC performance, the results showed that cathodes containing Fe-based catalyst outperformed AC-based cathodes after 3 months of operation. The long-term test reported that Fe-STR-based cathodes allow MFCs to reach a stable power output of 104.5 ± 0.0 μW cm−2, 74% higher than AC-based cathodes (60.4 ± 3.9 μW cm−2). To the best of the Authors' knowledge, this power performance is the highest recorded from ceramic-type MFCs fed with human urine

    Exchange current density as an effective descriptor of poisoning of active sites in platinum group metal-free electrocatalysts for oxygen reduction reaction

    Get PDF
    The oxygen reduction reaction (ORR) is of primary importance for the direct and clean conversion of energy in fuel cells, necessarily requiring an electrocatalyst to be exploited. At the state of the art, platinum group metal-free (PGM-free) electrocatalysts are the most promising alternative to carbon-supported Pt nanoparticles (Pt/C), which are more expensive and more performing but highly prone to deactivation in a contaminated working environment. The comparison of the two materials is at the level of fine-tuning, requiring specific activity descriptors, namely, turnover frequency (TOF) and site density (SD), to understand how to compare the performance of PGM-free electrocatalysts with Pt/C electrocatalysts. Specific probing molecules that bind with the active sites are required to evaluate the SD of PGM-free electrocatalysts. However, PGM-free electrocatalysts possess not a single active site like Pt/C, but a multitude of primary (metal-containing) and secondary (metal-free) sites arising from the pyrolysis synthesis process, eventually complicating SD evaluation. In this work, we propose a method for evaluating the direct interaction through the chemisorption of probing molecules over the PGM-free primary and secondary sites, the discrimination of which is of paramount importance in an effective SD evaluation. Based on the rotating disk electrode technique, the study investigates the electrochemistry of Fe-based PGM-free electrocatalysts poisoned with hydrogen sulfide at pH 1 in comparison with a Pt/C sample. In addition, X-ray photoelectron spectroscopy (XPS) is used to establish a relationship between the electrochemistry and surface chemistry of the poisoned material. The results identify the exchange current density as a meaningful tool that allows the discrimination of poisoning of specific active sites (metal-containing or metal-free). In addition, the understanding of the interaction phenomenon occurring between sites and probing molecules will be paramount for the selection of those contaminants capable of selectively interacting with the active sites of interest, paving the way to a more accurate SD evaluation

    Role of subsea permafrost and gas hydrate in postglacial Arctic methane releases

    Get PDF
    The papers of this thesis are not available in Munin.<br>Paper I: 'Offshore permafrost decay and massive seabed methane escape in water depths > 20 m at the South Kara Sea shelf.' Alexey Portnov, Andrew J. Smith, Jürgen Mienert, Georgy Cherkashov, Pavel Rekant, Peter Semenov, Pavel Serov, Boris Vanshtein. Available in <a href=http://dx.doi.org/10.1002/grl.50735> Geophysical Research Letters, vol. 40, 1–6</a><br>Paper II: 'Modeling the evolution of climate-sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf.' Alexey Portnov, Jurgen Mienert, Pavel Serov. Available in <a href=http://dx.doi.org/10.1002/2014JG002685> Journal of Geophysical Research: Biogeosciences, vol. 119, issue 11, 2014</a> <br>Paper III: 'Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost'. Pavel Serov, Alexey Portnov, Jurgen Mienert, Peter Semenov, Polina Ilatovskaya. (Manuscript). Published version available in <a href=http://dx.doi.org/10.1002/2015JF003467> Journal of Geophysical Research: Earth Surface, vol. 120, issue 8, 2015</a> <br>Paper IV: 'Ice-sheet driven methane storage and release in the Arctic.' Alexey Portnov, Sunil Vadakkepulyambatta, Jurgen Mienert, Alun Hubbard. (Manuscript)Greenhouse gas methane is contained as gas hydrate, an icy structure, under the seabed in enormous amounts of Arctic regions. West Svalbard continental margin, which we investigated here, is one of these regions. Also, in the Russian Kara Sea the subsea permafrost is acting as a cap for the gas to be released in the future. But continuous expulsions of methane have been already observed in both places. This study shows how the subsea permafrost in the Kara Sea, and gas hydrate systems offshore West Svalbard, have evolved from the last ice age to the present day. The conclusions are based on integrated field geophysical and gas-geochemical studies as well as modeling of permafrost, gas hydrate reservoirs and Barents Sea ice sheet dynamics. It shows that continuous permafrost of the Kara Sea is more fragile than previously thought. It is likely to be limited to the shallow water depths of 20 meters on this Arctic shelf region, allowing expulsions of methane from an area of 7500 sq km. Offshore Svalbard almost 2000 active and inactive gas expulsion sites are associated with melting of gas hydrate and thawing of shallow permafrost from past to present. Our research approach shows that natural climate drivers such as methane release can change and that they are connected to the ice sheet retreat since the last ice age. These processes triggered widespread seafloor gas discharge, observed in Arctic shelf and upper continental margins to this day

    High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application

    Get PDF
    © 2015, Macmillan Publishers Limited. All rights reserved. For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC design. This catalyst demonstrated better performance than platinum (Pt) during screening in "clean" conditions (PBS), and no degradation in performance during the operation in wastewater. The maximum power density generated by the SCMFC with Fe-AAPyr was 167±6μWcm-2 and remained stable over 16 days, while SCMFC with Pt decreased to 113±4μWcm-2 by day 13, achieving similar values of an activated carbon based cathode. The presence of S2- and SO42- showed insignificant decrease of ORR activity for the Fe-AAPyr. The reported results clearly demonstrate that Fe-AAPyr can be utilized in MFCs under the harsh conditions of wastewater

    A family of Fe-N-C oxygen reduction electrocatalysts for microbial fuel cell (MFC) application: Relationships between surface chemistry and performances

    Get PDF
    © 2016 The Author(s) Different iron-based cathode catalysts have been studied for oxygen reduction reaction (ORR) in neutral media and then applied into microbial fuel cells (MFC). The catalysts have been synthesized using sacrificial support method (SSM) using eight different organic precursors named Niclosamide, Ricobendazole, Guanosine, Succinylsulfathiazole, Sulfacetamide, Quinine, Sulfadiazine and Pyrazinamide. Linear Sweep Voltammetry (LSV) curves were obtained for the catalysts using a O2 saturated in 0.1M potassium phosphate buffer and 0.1M KCl solution and a Rotating Ring Disk Electrode (RRDE) setup in order to study the ORR characteristics. Additionally, we analyze the peroxide yield obtained for each catalyst which helps us determine the reaction kinetics. Those catalysts have been mixed with activated carbon (AC), carbon black (CB) and PTFE and pressed on a metallic mesh forming a pellet-like gas diffusion electrode (GDE). Results showed that Fe-Ricobendazole, Fe-Niclosamide and Fe-Pyrazinamide had the highest cathode polarization curves and highest power densities output that was above 200μWcm−2. Fe-Ricobendazole, Fe-Niclosamide, Fe-Pyrazinamide, Fe-Guanosine Fe-Succinylsulfathiazole and Fe-Sulfacetamide outperformed compared to Pt cathode. Fe-Sulfadiazene and Fe-Quinine performed better than AC used as control but less than Pt. Correlation of surface composition with performance showed that power density achieved is directly related to the total amount of nitrogen, and in particularly, N coordinated to metal and pyridinic and pyrrolic types while larger amounts of graphitic nitrogen result in worse performance

    Increased power generation in supercapacitive microbial fuel cell stack using Fe–N–C cathode catalyst

    Get PDF
    © 2018 The Authors The anode and cathode electrodes of a microbial fuel cell (MFC) stack, composed of 28 single MFCs, were used as the negative and positive electrodes, respectively of an internal self-charged supercapacitor. Particularly, carbon veil was used as the negative electrode and activated carbon with a Fe-based catalyst as the positive electrode. The red-ox reactions on the anode and cathode, self-charged these electrodes creating an internal electrochemical double layer capacitor. Galvanostatic discharges were performed at different current and time pulses. Supercapacitive-MFC (SC-MFC) was also tested at four different solution conductivities. SC-MFC had an equivalent series resistance (ESR) decreasing from 6.00 Ω to 3.42 Ω in four solutions with conductivity between 2.5 mScm−1 and 40 mScm−1. The ohmic resistance of the positive electrode corresponded to 75–80% of the overall ESR. The highest performance was achieved with a solution conductivity of 40 mS cm−1 and this was due to the positive electrode potential enhancement for the utilization of Fe-based catalysts. Maximum power was 36.9 mW (36.9 W m−3) that decreased with increasing pulse time. SC-MFC was subjected to 4520 cycles (8 days) with a pulse time of 5 s (ipulse 55 mA) and a self-recharging time of 150 s showing robust reproducibility
    corecore