24 research outputs found

    Π Π΅ΠΊΡƒΡ€Ρ€Π΅Π½Ρ‚Π½Ρ‹Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ вычислСния корня ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ стСпСни Π² ΠΊΠΎΠ»ΡŒΡ†Π΅ Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠ²

    Get PDF
    Π£ Π΄Π°Π½Ρ–ΠΉ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€Ρ–ΠΉ стСпСнСвості Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π° скінчСного поля Ρ‚Π° Π½Π°Π²Π΅Π΄Π΅Π½ΠΎ прості Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΈ обчислСння ΠΊΡƒΠ±Ρ–Ρ‡Π½ΠΎΠ³ΠΎ корСня Ρ‚Π° Ρ€Π΅ΠΊΡƒΡ€Π΅Π½Ρ‚Π½Ρ– Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΈ обчислСння ΠΊΠΎΡ€Π΅Π½Ρ–Π² Π±Ρ–Π»ΡŒΡˆ високого ΡΡ‚Π΅ΠΏΠ΅Π½ΡŽ Π· Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρƒ поля, який Ρ” Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΈΠΌ стСпСнСвим лишком. Алгоритми розпізнавання стСпСнСвості Ρ‚Π° добування корСня Π·Π° складСним ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ (Π½Π°ΠΏΡ€ΠΈΠΊΠ»Π°Π΄, Π·Π° ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ n=pq) ΠΏΠΎΠ²Π½Ρ–ΡΡ‚ΡŽ Π²ΠΈΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡŒΡΡ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΈΠΌΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°ΠΌΠΈ Π·Π° простим ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ, Π·Π° ΡƒΠΌΠΎΠ²ΠΈ, Ρ‰ΠΎ Π²Ρ–Π΄ΠΎΠΌΠΈΠΉ Ρ€ΠΎΠ·ΠΊΠ»Π°Π΄ числа ΠΏ Π½Π° прості ΠΌΠ½ΠΎΠΆΠ½ΠΈΠΊΠΈ. Π¦Ρ–ΠΊΠ°Π²ΠΎ Ρ‚Π°ΠΊΠΎΠΆ Π·Π°Π·Π½Π°Ρ‡ΠΈΡ‚ΠΈ, Ρ‰ΠΎ Π·Π°Π΄Π°Ρ‡Π° Ρ€ΠΎΠ·ΠΊΠ»Π°Π΄Ρƒ Π½Π° прості ΠΌΠ½ΠΎΠΆΠ½ΠΈΠΊΠΈ Ρ‚Π° Π·Π°Π΄Π°Ρ‡Π° добування корСня Ρ” ΠΏΠΎΠ»Ρ–Π½ΠΎΠΌΡ–Π°Π»ΡŒΠ½ΠΎ Π΅ΠΊΠ²Ρ–Π²Π°Π»Π΅Π½Ρ‚Π½ΠΈΠΌΠΈ відносно імовірнісного Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ. Π”Π°Π½Ρ– Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΈ Ρ”, ΠΏΠ΅Ρ€Ρˆ Π·Π° всС, Ρ†Ρ–ΠΊΠ°Π²ΠΈΠΌΠΈ Π· ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΡ— Ρ‚ΠΎΡ‡ΠΊΠΈ Π·ΠΎΡ€Ρƒ, Π° Ρ—Ρ… ΠΏΠΎΠΎΠ΄ΠΈΠ½ΠΎΠΊΠΈΠΉ Π²ΠΈΠΏΠ°Π΄ΠΎΠΊ – Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΈ добування ΠΊΡƒΠ±Ρ–Ρ‡Π½ΠΎΠ³ΠΎ корСня – ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані як Π΄ΠΎΠΏΠΎΠΌΡ–ΠΆΠ½Ρ– ΠΏΡ€ΠΈ обчислСння Π±Π°Π·ΠΎΠ²ΠΎΡ— Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΡ€ΠΈΠ²ΠΎΡ— Ρ‚Π° ΠΏΡ€ΠΈ "Π²ΠΊΠ»Π°Π΄Π°Π½Π½Ρ–" Π²Ρ–Π΄ΠΊΡ€ΠΈΡ‚ΠΎΠ³ΠΎ тСксту Ρƒ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΊΡ€ΠΈΠ²ΠΎΡ—, Ρƒ Ρ‚ΠΎΠΌΡƒ числі Ρ– якщо ΠΊΡ€ΠΈΠ²Π° Π·Π°Π΄Π°Π½Π° Π½Π°Π΄ ΠΊΡ–Π»ΡŒΡ†Π΅ΠΌ Π»ΠΈΡˆΠΊΡ–Π², Π° Π½Π΅ Π½Π°Π΄ ΠΏΠΎΠ»Π΅ΠΌ.In this paper, the criterion of power element of finite field is obtained and simple algorithms for calculating the cubic root and recursive algorithms for calculating the roots of higher powers are constructed. Power recognition algorithm and rooting for composite module (particularly for modulo n=pq) are completely determined by the corresponding algorithms for a simple modules, provided that factorization is known. It is also interesting to note that for n=pq the factorization problem and rooting problem are polynomial equivalent relatively probabilistic algorithm. These algorithms are primarily interesting from a mathematical point of view, and their particular case – the cubic root extraction algorithm – can be used as aids in calculating the base point of the elliptic curve and for "imbedding" of plaintext into curve point, also if curve is defined over the residue rings instead of the field.Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ стСпСнности элСмСнта ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ поля ΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ простыС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ вычислСния ΠΊΡƒΠ±ΠΈΡ‡Π½ΠΎΠ³ΠΎ коня ΠΈ Ρ€Π΅ΠΊΡƒΡ€Ρ€Π΅Π½Ρ‚Π½Ρ‹Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ вычислСния ΠΊΠΎΡ€Π½Π΅ΠΉ Π±ΠΎΠ»Π΅Π΅ высоких стСпСнСй ΠΈΠ· элСмСнта поля, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ являСтся ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ стСпСнным Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠΌ. Алгоритмы распознавания стСпСнности ΠΈ вычислСния корня ΠΏΠΎ составному ΠΌΠΎΠ΄ΡƒΠ»ΡŽ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ n=pq) ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°ΠΌΠΈ для простого модуля, ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ извСстно Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ модуля Π½Π° простыС ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ. Π˜Π½Ρ‚Π΅Ρ€Π΅ΡΠ½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π·Π°Π΄Π°Ρ‡Π° разлоТСния Π½Π° простыС ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ ΠΈ Π·Π°Π΄Π°Ρ‡Π° вычислСния корня ΡΠ²Π»ΡΡŽΡ‚ΡΡ полиномиально эквивалСнтными ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вСроятностного Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°. Π”Π°Π½Π½Ρ‹Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, интСрСсными с матСматичСской Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния, Π° ΠΈΡ… частный случай – Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ вычислСния кубичСского корня – ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΊΠ°ΠΊ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΈ вычислСнии Π±Π°Π·ΠΎΠ²ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΈ ΠΏΡ€ΠΈ "Π²Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ" ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠ³ΠΎ тСкста Π² Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Π² Ρ‚ΠΎΠΌ числС ΠΈ Ссли кривая Π·Π°Π΄Π°Π½Π° Π½Π°Π΄ ΠΊΠΎΠ»ΡŒΡ†ΠΎΠΌ Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠ², Π° Π½Π΅ Π½Π°Π΄ ΠΏΠΎΠ»Π΅ΠΌ

    Photovoltage spectroscopy of dipolar spin waves in Dy micromagnets

    Get PDF
    We report on a sensitive spectroscopic technique for probing the spin excitations of individual submicron magnets. This technique uses a high mobility two dimensional electron gas (2DEG) confined in a GaAs/AlGaAs heterojunction to pick up the oscillating dipolar magnetic field emanating from the individual spin wave modes of micromagnets fabricated at its surface. We review a range of dynamic phenomena that demonstrate the formation of magnetostatic waves in finger gate arrays, dipolar edge spin waves in bar magnets, vortex hysteresis in magnetic dots and the photovoltage dependence on microwave polarization.</jats:p

    Field-free spin-orbit torque switching enabled by interlayer Dzyaloshinskii-Moriya interaction

    Full text link
    Perpendicularly magnetized structures that are switchable using a spin current under field-free conditions can potentially be applied in spin-orbit torque magnetic random-access memory(SOT-MRAM).Several structures have been developed;however,new structures with a simple stack structure and MRAM compatibility are urgently needed.Herein,a typical structure in a perpendicular spin-transfer torque MRAM,the Pt/Co multilayer and its synthetic antiferromagnetic counterpart with perpendicular magnetic anisotropy, was observed to possess an intrinsic interlayer chiral interaction between neighboring magnetic layers,namely the interlayer Dzyaloshinskii-Moriya interaction (DMI) effect. Furthermore, using a current parallel to the eigenvector of the interlayer DMI, we switched the perpendicular magnetization of both structures without a magnetic field, owing to the additional symmetry-breaking introduced by the interlayer DMI. This SOT switching scheme realized in the Pt/Co multilayer and its synthetic antiferromagnet structure may open a new avenue toward practical perpendicular SOT-MRAM and other SOT devices

    Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method

    No full text
    The paper presents a method for the high-resolution production of polymer nanopatterns with controllable geometrical parameters by means of a single-spot electron-beam lithography technique. The essence of the method entails the overexposure of a positive-tone resist, spin-coated onto a substrate where nanoscale spots are exposed to an electron beam with a dose greater than 0.1 pC per dot. A single-spot enables the fabrication of a nanoring, while a chain of spots placed at distance of 5–30 nm from each other allows the production of a polymer pattern of complex geometry of sub-10 nm resolution. We demonstrate that in addition to the naturally oxidized silicon substrates, gold-coated substrates can also successfully be used for the single-spot nanopattering technique. An explanation of the results related to the resist overexposure was demonstrated using Monte Carlo simulations. Our nanofabrication method significantly accelerates (up to 10 times) the fabrication rate as compared to conventional lithography on positive-tone resist. This technique can be potentially employed in the electronics industry for the production of nanoprinted lithography molds, etching masks, nanoelectronics, nanophotonics, NEMS and MEMS devices

    Analyzer-free, intensity-based, wide-field magneto-optical microscopy

    Get PDF
    In conventional Kerr and Faraday microscopy, the sample is illuminated with plane-polarized light, and a magnetic domain contrast is generated by an analyzer making use of the Kerr or Faraday rotation. Here, we demonstrate possibilities of analyzer-free magneto-optical microscopy based on magnetization-dependent intensity modulations of the light. (i) The transverse Kerr effect can be applied for in-plane magnetized material, as demonstrated for an FeSi sheet. (ii) Illuminating that sample with circularly polarized light leads to a domain contrast with a different symmetry from the conventional Kerr contrast. (iii) Circular polarization can also be used for perpendicularly magnetized material, as demonstrated for garnet and ultrathin CoFeB films. (iv) Plane-polarized light at a specific angle can be employed for both in-plane and perpendicular media. (v) Perpendicular light incidence leads to a domain contrast on in-plane materials that is quadratic in the magnetization and to a domain boundary contrast. (vi) Domain contrast can even be obtained without a polarizer. In cases (ii) and (iii), the contrast is generated by magnetic circular dichroism (i.e., differential absorption of left- and right-circularly polarized light induced by magnetization components along the direction of light propagation), while magnetic linear dichroism (differential absorption of linearly polarized light induced by magnetization components transverse to propagation) is responsible for the contrast in case (v). The domain-boundary contrast is due to the magneto-optical gradient effect. A domain-boundary contrast can also arise by interference of phase-shifted magneto-optical amplitudes. An explanation of these contrast phenomena is provided in terms of Maxwell-Fresnel theory

    Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry

    No full text
    Magnetic nanostructures in the form of a sandwich consisting of two permalloy (Py) disks with diameters of 600 and 200 nm separated by a nonmagnetic interlayer are studied. Magnetization reversal of the disk-on-disk nanostructures depends on the distance between centers of the small and big disks and on orientation of an external magnetic field applied during measurements. It is found that manipulation of the magnetic vortex chirality and the trajectory of the vortex core in the big disk is only possible in asymmetric nanostructures. Experimentally studied peculiarities of a motion path of the vortex core and vortex parameters by the magneto-optical Kerr effect (MOKE) magnetometer are supported by the magnetic force microscopy imaging and micromagnetic simulations
    corecore