181 research outputs found
Tetravalent chromium doped laser materials and NIR tunable lasers
A method is described to improve and produce purer Cr.sup.4+-doped laser materials and lasers with reduced co-incorporation of chromium in any other valence states, such as Cr.sup.3+, Cr.sup.2+, Cr.sup.5+, and Cr.sup.6+. The method includes: 1) certain crystals of olivine structure with large cation (Ca) in octahedral sites such as Cr.sup.4+:Ca.sub.2GeO.sub.4, Cr.sup.4+:Ca.sub.2SiO.sub.4, Cr.sup.4+:Ca.sub.2Ge.sub.xSi.sub.1-xO.sub.4 (where 0<x<1), and/or 2) high-temperature solution growth techniques that enable the growth of the crystals below the temperature of polymorphic transitions by using low melting point solvent based on oxide, fluoride and/or chloride compounds. Purer Cr.sup.4+-doped laser materials are characterized by a relatively high concentration of Cr.sup.4+-lasing ion in crystalline host that makes these materials suitable for compact high power (thin disk/wedge) NIR laser applications
Cr.sup.4+-doped mixed alloy laser materials and lasers and methods using the materials
A laser medium includes a single crystal of Cr.sup.4+:Mg.sub.2-xM.sub.xSi.sub.1-yA.sub.yO.sub.4, where, where M is a bivalent ion having an ionic radius larger than Mg.sup.2+, and A is a tetravalent ion having an ionic radius larger than Si.sup.4+. In addition, either a) 0.ltoreq.x<2 and 0<y<1 or b) 0<x<2 and y is 0 or 1 with the proviso that if M is Ca.sup.2+ and x=1 then y is not 0. The laser medium can be used in a laser device, such as a tunable near infrared (NIR) laser
The Mechanism for the Provision of Advisory Support in the Area of Transport Corridor of Black Sea Economic Cooperation Organization
Examines current trends in project implementation, international black sea transport corridor. The conditions of interaction between the member countries of the Organization of the Black Sea Economic Cooperation. Offers directions consulting support during implementation of the project «Black Sea Ring». Discusses the basic components of the mechanism for providing Advisory support in the area of transport corridor of Black Sea Economic Cooperation Organization
Broadband Transient Response and Wavelength-Tunable Photoacoustics in Plasmonic Hetero-nanoparticles
Author Correction:Mutual interaction of red blood cells influenced by nanoparticles (Scientific Reports, (2019), 9, 1, (5147), 10.1038/s41598-019-41643-x)
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper
Mutual interaction of red blood cells influenced by nanoparticles
Despite extensive studies on different types of nanoparticles as potential drug carriers, the application of red blood cells (RBCs) as natural transport agents for systemic drug delivery is considered a new paradigm in modern medicine and possesses great potential. There is a lack of studies on the influence of drug carriers of different compositions on RBCs, especially regarding their potential impact on human health. Here, we apply conventional microscopy to observe the formation of RBC aggregates and optical tweezers to quantitatively assess the mutual interaction of RBCs incubated with inorganic and polymeric nanoparticles. Scanning electron microscopy is utilized for direct observation of nanoparticle localization on RBC membranes. The experiments are performed in a platelet-free blood plasma mimicking the RBC natural environment. We show that nanodiamonds influence mutual RBC interactions more antagonistically than other nanoparticles, resulting in higher aggregation forces and the formation of larger cell aggregates. In contrast, polymeric particles do not cause anomalous RBC aggregation. The results emphasize the application of optical tweezers for the direct quantitative assessment of the mutual interaction of RBCs influenced by nanomaterials
Role of scattering and birefringence in phase retardation revealed by locus of Stokes vector on Poincaré sphere
SIGNIFICANCE: Biological tissues are typically characterized by high anisotropic scattering and may also exhibit linear form birefringence. Both scattering and birefringence bias the phase shift between transverse electric field components of polarized light. These phase alterations are associated with particular structural malformations in the tissue. In fact, the majority of polarization-based techniques are unable to distinguish the nature of the phase shift induced by birefringence or scattering of light. AIM: We explore the distinct contributions of scattering and birefringence in the phase retardation of circularly polarized light propagated in turbid tissue-like scattering medium. APPROACH: The circularly polarized light in frame of Stokes polarimetry approach is used for the screening of biotissue phantoms and chicken skin samples. The change of optical properties in chicken skin is accomplished by optical clearing, which reduces scattering, and mechanical stretch, which induces birefringence. The change of optical properties of skin tissue is confirmed by spectrophotometric measurements and second-harmonic generation imaging. RESULTS: The contributions of scattering and birefringence in the phase retardation of circularly polarized light propagated in biological tissues are distinguished by the locus of the Stokes vector mapped on the Poincaré sphere. The phase retardation of circularly polarized light due to scattering alterations is assessed. The value of birefringence in chicken skin is estimated as 0.3 × 10 - 3, which agrees with alternative studies. The change of birefringence of skin tissue due to mechanical stretch in the order of 10 - 6 is detected. CONCLUSIONS: While the polarimetric parameters on their own do not allow distinguishing the contributions of scattering and birefringence, the resultant Stokes vector trajectory on the Poincaré sphere reveals the role of scattering and birefringence in the total phase retardation. The described approach, applied independently or in combination with Mueller polarimetry, can be beneficial for the advanced characterization of various types of malformations within biological tissues.</p
Cr.sup.3+-doped laser materials and lasers and methods of making and using
A laser medium includes a single crystal of chromium-doped LiSc.sub.l-xIn.sub.xGe.sub.1-ySi.sub.yO.sub.4, where 0.ltoreq.x.ltoreq.1 and 0.ltoreq.y.ltoreq.1. Preferably, x and y are not both 0. A laser, such as a tunable near infrared laser, can contain the laser medium
Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo
Mechanical pressure superficially applied on the human skin surface by a fiber-optic probe influences the spatial distribution of blood within the cutaneous tissues. Upon gradual load of weight on the probe, a stepwise increase in the skin reflectance spectra is observed. The decrease in the load follows the similar inverse staircase-like tendency. The observed stepwise reflectance spectra changes are due to, respectively, sequential extrusion of blood from the topical cutaneous vascular beds and their filling afterward. The obtained results are confirmed by Monte Carlo modeling. This implies that pressure-induced influence during the human skin diffuse reflectance spectra measurements in vivo should be taken into consideration, in particular, in the rapidly developing area of wearable gadgets for real-time monitoring of various human body parameters
- …